Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes: what they are and why they are so important

01.08.2003


Introduction - Enzymology in 2003



Why the 90th anniversary of v = Vmax x [S] / (Km + [S]) is as important as the 50th anniversary of the double-helical structure of DNA. Enzymology is essential, to find out how nucleic acids fulfil their biological functions. Moreover, genome analysis will always, at some stage in the process, have to advance from sequence gazing to enzymology, since the objective of the analysis must be to identify the reactions mediated by the products of each open reading frame. "Enzymology is thus central to nucleic acid and genomic biochemistry," says author Stephen Halford.

Contact: Stephen Halford, Department of Biochemistry, University of Bristol, Bristol BS8 1TD; tel: +44 (0)117-928-7429; e-mail: s.halford@bristol.ac.uk


Ancient enzymology?

How did life start to reproduce? In this article David Lilley looks at the mysteries of the RNA world, the time before DNA. "There is a significant chicken-and-egg problem that bedevils imagining how life could have developed on the planet from some kind of primeval soup," says the author. "All contemporary life uses nucleic acids as the genetic repository and proteins as the chemical workhorse." Taking the remarkable discovery some 20 years ago that RNA could behave like an enzyme he demonstrates how it could have happened, and explains why the connection between ribozymes and ribosomes is far more than typographical.

Contact: David M. J. Lilley, Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH; tel.: +44 (0)1382-344243; e-mail: d.m.j.lilley@dundee.ac.uk

Directed evolution

One of the ultimate goals of protein engineers has been to acquire the knowledge to design and build proteins for any given function - for example to produce "tailor-made" enzymes for any given reaction. This has usually been done by modifying an existing protein with a similar function. Although this has resulted in some notable successes, more often it has highlighted our relatively poor understanding of the intricacies of enzyme recognition and catalysis. Here, authors Gavin Williams and Alan Berry describe how they developed an alternative: directed evolution.

Contact: Alan Berry, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT; tel.: +44 (0)113 343 3158; e-mail: A.Berry@leeds.ac.uk

Integral Membrane Enzymes

The design of ’’real’’ integral membrane enzymes must be difficult, because nature uses enzymes of this type only when it really has to. But difficult is not the same as impossible. Anthony Lee looks at the problems and the solutions.

Contact: Anthony Lee, Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX; tel.: +44 (0)23 8059 4331; e-mail: agl@soton.ac.uk

Power versus control

More than a third of all enzymes catalyse the oxidation or reduction of a substrate yet the often complex, redox chemistry involved is made possible by surprisingly few cofactors. Stephen Chapman, Simon Daff and Tobias W. B. Ost look at the reasons why.

Contact: Stephen Chapman, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ; tel.: +44 (0)131 650 4760; e-mail: S.K.Chapman@ed.ac.uk

Single molecule enzymology

We can now measure enzyme activity at the level of a single enzyme molecule. This is technically impressive, but what can it really tell us? Here, Clive R. Bagshaw reviews the basic principles to show that new forms of heterogeneity in activity may be revealed and evidence gained for rare states that would otherwise be swamped in bulk assays.

Contact: Clive Bagshaw, Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH; tel.: +44 (0)116 252 3454; e-mail: crb5@le.ac.uk

Product focus: Automated image analysis

Paul Ellwood from Syngene looks at how automated image analysis can improve accuracy and increase productivity in drug discovery.

Contact: Paul Ellwood, Beacon House, Nuffield Road, Cambridge, CB4 1TF; tel: +44 (0) 1223-727123; e-mail: paul.ellwood@syngene.com

Mark Burgess | alfa
Further information:
http://www.biochemist.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>