Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzymes: what they are and why they are so important

01.08.2003


Introduction - Enzymology in 2003



Why the 90th anniversary of v = Vmax x [S] / (Km + [S]) is as important as the 50th anniversary of the double-helical structure of DNA. Enzymology is essential, to find out how nucleic acids fulfil their biological functions. Moreover, genome analysis will always, at some stage in the process, have to advance from sequence gazing to enzymology, since the objective of the analysis must be to identify the reactions mediated by the products of each open reading frame. "Enzymology is thus central to nucleic acid and genomic biochemistry," says author Stephen Halford.

Contact: Stephen Halford, Department of Biochemistry, University of Bristol, Bristol BS8 1TD; tel: +44 (0)117-928-7429; e-mail: s.halford@bristol.ac.uk


Ancient enzymology?

How did life start to reproduce? In this article David Lilley looks at the mysteries of the RNA world, the time before DNA. "There is a significant chicken-and-egg problem that bedevils imagining how life could have developed on the planet from some kind of primeval soup," says the author. "All contemporary life uses nucleic acids as the genetic repository and proteins as the chemical workhorse." Taking the remarkable discovery some 20 years ago that RNA could behave like an enzyme he demonstrates how it could have happened, and explains why the connection between ribozymes and ribosomes is far more than typographical.

Contact: David M. J. Lilley, Cancer Research UK Nucleic Acid Structure Research Group, Department of Biochemistry, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH; tel.: +44 (0)1382-344243; e-mail: d.m.j.lilley@dundee.ac.uk

Directed evolution

One of the ultimate goals of protein engineers has been to acquire the knowledge to design and build proteins for any given function - for example to produce "tailor-made" enzymes for any given reaction. This has usually been done by modifying an existing protein with a similar function. Although this has resulted in some notable successes, more often it has highlighted our relatively poor understanding of the intricacies of enzyme recognition and catalysis. Here, authors Gavin Williams and Alan Berry describe how they developed an alternative: directed evolution.

Contact: Alan Berry, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT; tel.: +44 (0)113 343 3158; e-mail: A.Berry@leeds.ac.uk

Integral Membrane Enzymes

The design of ’’real’’ integral membrane enzymes must be difficult, because nature uses enzymes of this type only when it really has to. But difficult is not the same as impossible. Anthony Lee looks at the problems and the solutions.

Contact: Anthony Lee, Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX; tel.: +44 (0)23 8059 4331; e-mail: agl@soton.ac.uk

Power versus control

More than a third of all enzymes catalyse the oxidation or reduction of a substrate yet the often complex, redox chemistry involved is made possible by surprisingly few cofactors. Stephen Chapman, Simon Daff and Tobias W. B. Ost look at the reasons why.

Contact: Stephen Chapman, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ; tel.: +44 (0)131 650 4760; e-mail: S.K.Chapman@ed.ac.uk

Single molecule enzymology

We can now measure enzyme activity at the level of a single enzyme molecule. This is technically impressive, but what can it really tell us? Here, Clive R. Bagshaw reviews the basic principles to show that new forms of heterogeneity in activity may be revealed and evidence gained for rare states that would otherwise be swamped in bulk assays.

Contact: Clive Bagshaw, Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH; tel.: +44 (0)116 252 3454; e-mail: crb5@le.ac.uk

Product focus: Automated image analysis

Paul Ellwood from Syngene looks at how automated image analysis can improve accuracy and increase productivity in drug discovery.

Contact: Paul Ellwood, Beacon House, Nuffield Road, Cambridge, CB4 1TF; tel: +44 (0) 1223-727123; e-mail: paul.ellwood@syngene.com

Mark Burgess | alfa
Further information:
http://www.biochemist.org

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>