Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coping: Plant adaptability to stress discovered

31.07.2003


Most people who get too hot and thirsty this summer can quickly grab a cool drink. Not so for plants. Their roots keep them lingering in stressful situations - sometimes to death. Now a Texas A&M University researcher has identified a system in a mutant arabidopsis, a type of weed, that signals to its cells to go on hold until stressful situations pass.



The involvement of "ER stress signal pathway" in plant stress adaptation was discovered by Dr. Hisashi Koiwa, assistant professor of horticultural sciences, and colleagues. Koiwa is presenting the finding at the annual meeting of American Society of Plant Biologists this week (July 26-31) in Hawaii. The findings also will appear in an upcoming issue of the journal "The Plant Cell."

"A plant will attempt to regulate itself when stressed by adjusting its cells to the environment before starting to grow again," Koiwa said. "It´s as if a plant is saying to itself, - wait, we´re in a drought, let´s adjust before we grow anymore. "A plant must have a better stress handling technique," he added.


The scientist explained that when a plant is stressed, it has to rest until it adjusts because if plant cells continue to divide under stress, they might "burst." Something signals a plant to pause, he said, but scientists have never fully studied the systems of plants. His research, funded in part with a National Science Foundation grant through collaboration with Purdue University researchers, describes how the process works in the mutant arabidopsis.

"It´s a natural way for the plant to sense stress and signal to adjust," Koiwa said. "The concept is not new, but it had not been fully established prior to this research." He said researchers now can look closer at the process to see what happens in other plants. In the long term, he said, plant breeders might use this knowledge to breed plants that are more able to adjust to various environment stresses such as extreme temperatures or the lack or abundance of water.

"If a species of plants can´t take a drought, perhaps a plant breeder could enhance the ER stress signal pathway to enable that species to be more adaptable so that it can survive and grow well," Koiwa said. "Otherwise, in many cases, a plant responds to such stress too late to recover."

But more information is needed. Researchers now know there is a system, but don´t understand why it works as it does. He said it is similar to understanding that the muscle system in humans allow for movement, but knowing why is necessary to find medical answers for failed muscles.

Researchers now may take the study a step further, Koiwa said, to find out the "mechanism a plant uses to hold on for the stress and the mechanism a plant uses to indicate it is ready to start cell division again."

Kathleen Phillips | Texas A&M University
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>