Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coping: Plant adaptability to stress discovered

31.07.2003


Most people who get too hot and thirsty this summer can quickly grab a cool drink. Not so for plants. Their roots keep them lingering in stressful situations - sometimes to death. Now a Texas A&M University researcher has identified a system in a mutant arabidopsis, a type of weed, that signals to its cells to go on hold until stressful situations pass.



The involvement of "ER stress signal pathway" in plant stress adaptation was discovered by Dr. Hisashi Koiwa, assistant professor of horticultural sciences, and colleagues. Koiwa is presenting the finding at the annual meeting of American Society of Plant Biologists this week (July 26-31) in Hawaii. The findings also will appear in an upcoming issue of the journal "The Plant Cell."

"A plant will attempt to regulate itself when stressed by adjusting its cells to the environment before starting to grow again," Koiwa said. "It´s as if a plant is saying to itself, - wait, we´re in a drought, let´s adjust before we grow anymore. "A plant must have a better stress handling technique," he added.


The scientist explained that when a plant is stressed, it has to rest until it adjusts because if plant cells continue to divide under stress, they might "burst." Something signals a plant to pause, he said, but scientists have never fully studied the systems of plants. His research, funded in part with a National Science Foundation grant through collaboration with Purdue University researchers, describes how the process works in the mutant arabidopsis.

"It´s a natural way for the plant to sense stress and signal to adjust," Koiwa said. "The concept is not new, but it had not been fully established prior to this research." He said researchers now can look closer at the process to see what happens in other plants. In the long term, he said, plant breeders might use this knowledge to breed plants that are more able to adjust to various environment stresses such as extreme temperatures or the lack or abundance of water.

"If a species of plants can´t take a drought, perhaps a plant breeder could enhance the ER stress signal pathway to enable that species to be more adaptable so that it can survive and grow well," Koiwa said. "Otherwise, in many cases, a plant responds to such stress too late to recover."

But more information is needed. Researchers now know there is a system, but don´t understand why it works as it does. He said it is similar to understanding that the muscle system in humans allow for movement, but knowing why is necessary to find medical answers for failed muscles.

Researchers now may take the study a step further, Koiwa said, to find out the "mechanism a plant uses to hold on for the stress and the mechanism a plant uses to indicate it is ready to start cell division again."

Kathleen Phillips | Texas A&M University
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>