Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell "suicide" enzymes are a missing link in Alzheimer’s disease

29.07.2003


Northwestern University researchers have found that caspases, a family of protein-cutting enzymes involved in programmed cell death (apoptosis), may be a missing link in the chain of molecular events leading to Alzheimer´s disease.
Alzheimer´s disease is a neurodegenerative condition affecting an estimated 4 million Americans that causes memory loss and, ultimately, dementia. Patients with this disease have abnormal deposits (plaques) of protein fragments called amyloid-beta surrounding neurons in their brain and "tangles" of a protein called tau inside brain cells.

For years, scientists have been debating which of these two events – plaques or tangles – is the primary cause of Alzheimer´s disease. Recent studies have suggested that amyloid promotes the assembly of tau into tangles, but, until now, the actual mechanism by which this occurs was poorly understood.


In an article appearing in the online version of the Proceedings of the National Academy of Sciences, co-senior authors Lester I. Binder and Vincent L. Cryns of the Feinberg School of Medicine at Northwestern University report that caspases may provide a direct link between amyloid and tangles.

Because caspases were known to be activated in dying neurons in Alzheimer´s disease and to cut (cleave) tau under some circumstances, Binder and Cryns reasoned that caspases might be responsible for cleaving tau into smaller or truncated forms that are often observed in tangles.

In a collaboration between their two labs, the scientists demonstrated that exposing neurons to amyloid-beta activates caspases, which then cleave tau at a specific site (Asp421) in the tail end of the molecule. They then showed that this truncated form of tau was much more prone to forming abnormal filaments that resemble tangles, suggesting that amyloid exposure might promote tangle formation through the action of caspases on tau.

To provide additional evidence of the relevance of their findings to Alzheimer´s disease, Binder and Cryns also created a monoclonal antibody that specifically recognizes the truncated form of tau produced by caspases. With this antibody, they demonstrated that tau is commonly cleaved at this site in the tangles in Alzheimer´s disease, indicating that caspase cleavage of tau may play a role in tangle formation in this disease.

By suggesting a new link between the two major brain abnormalities in Alzheimer´s disease, Binder and Cryns hope their work will "provide a common ground between the amyloid and tau proponents and point to the need to consider both of these interrelated pathological events in future studies and therapies."

Indeed, in ongoing studies in their laboratories, they hope to establish the timing of tau cleavage in Alzheimer´s disease brains relative to other molecular events and to determine what role, if any, caspase cleavage of tau has in neuronal cell death.

Binder is professor of cell and molecular biology and a researcher at the Cognitive Neurology and Alzheimer´s Disease Center at the Feinberg School. Cryns is assistant professor of medicine and director of the Cell Death Regulation Laboratory in the department of medicine at the Feinberg School. Their co-researchers on this study include: T. Chris Gamblin; Feng Chen; Angara Zambrano; Aida Abraha; Sarita Lagalwar; Angela L. Guillozet; Meling Lu; Yifan Fu; Francisco Garcia-Sierra; Nichole LaPointe; Richard Miller; and Robert W. Berry, professor of cell and molecular biology.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>