Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell "suicide" enzymes are a missing link in Alzheimer’s disease

29.07.2003


Northwestern University researchers have found that caspases, a family of protein-cutting enzymes involved in programmed cell death (apoptosis), may be a missing link in the chain of molecular events leading to Alzheimer´s disease.
Alzheimer´s disease is a neurodegenerative condition affecting an estimated 4 million Americans that causes memory loss and, ultimately, dementia. Patients with this disease have abnormal deposits (plaques) of protein fragments called amyloid-beta surrounding neurons in their brain and "tangles" of a protein called tau inside brain cells.

For years, scientists have been debating which of these two events – plaques or tangles – is the primary cause of Alzheimer´s disease. Recent studies have suggested that amyloid promotes the assembly of tau into tangles, but, until now, the actual mechanism by which this occurs was poorly understood.


In an article appearing in the online version of the Proceedings of the National Academy of Sciences, co-senior authors Lester I. Binder and Vincent L. Cryns of the Feinberg School of Medicine at Northwestern University report that caspases may provide a direct link between amyloid and tangles.

Because caspases were known to be activated in dying neurons in Alzheimer´s disease and to cut (cleave) tau under some circumstances, Binder and Cryns reasoned that caspases might be responsible for cleaving tau into smaller or truncated forms that are often observed in tangles.

In a collaboration between their two labs, the scientists demonstrated that exposing neurons to amyloid-beta activates caspases, which then cleave tau at a specific site (Asp421) in the tail end of the molecule. They then showed that this truncated form of tau was much more prone to forming abnormal filaments that resemble tangles, suggesting that amyloid exposure might promote tangle formation through the action of caspases on tau.

To provide additional evidence of the relevance of their findings to Alzheimer´s disease, Binder and Cryns also created a monoclonal antibody that specifically recognizes the truncated form of tau produced by caspases. With this antibody, they demonstrated that tau is commonly cleaved at this site in the tangles in Alzheimer´s disease, indicating that caspase cleavage of tau may play a role in tangle formation in this disease.

By suggesting a new link between the two major brain abnormalities in Alzheimer´s disease, Binder and Cryns hope their work will "provide a common ground between the amyloid and tau proponents and point to the need to consider both of these interrelated pathological events in future studies and therapies."

Indeed, in ongoing studies in their laboratories, they hope to establish the timing of tau cleavage in Alzheimer´s disease brains relative to other molecular events and to determine what role, if any, caspase cleavage of tau has in neuronal cell death.

Binder is professor of cell and molecular biology and a researcher at the Cognitive Neurology and Alzheimer´s Disease Center at the Feinberg School. Cryns is assistant professor of medicine and director of the Cell Death Regulation Laboratory in the department of medicine at the Feinberg School. Their co-researchers on this study include: T. Chris Gamblin; Feng Chen; Angara Zambrano; Aida Abraha; Sarita Lagalwar; Angela L. Guillozet; Meling Lu; Yifan Fu; Francisco Garcia-Sierra; Nichole LaPointe; Richard Miller; and Robert W. Berry, professor of cell and molecular biology.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>