Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell "suicide" enzymes are a missing link in Alzheimer’s disease

29.07.2003


Northwestern University researchers have found that caspases, a family of protein-cutting enzymes involved in programmed cell death (apoptosis), may be a missing link in the chain of molecular events leading to Alzheimer´s disease.
Alzheimer´s disease is a neurodegenerative condition affecting an estimated 4 million Americans that causes memory loss and, ultimately, dementia. Patients with this disease have abnormal deposits (plaques) of protein fragments called amyloid-beta surrounding neurons in their brain and "tangles" of a protein called tau inside brain cells.

For years, scientists have been debating which of these two events – plaques or tangles – is the primary cause of Alzheimer´s disease. Recent studies have suggested that amyloid promotes the assembly of tau into tangles, but, until now, the actual mechanism by which this occurs was poorly understood.


In an article appearing in the online version of the Proceedings of the National Academy of Sciences, co-senior authors Lester I. Binder and Vincent L. Cryns of the Feinberg School of Medicine at Northwestern University report that caspases may provide a direct link between amyloid and tangles.

Because caspases were known to be activated in dying neurons in Alzheimer´s disease and to cut (cleave) tau under some circumstances, Binder and Cryns reasoned that caspases might be responsible for cleaving tau into smaller or truncated forms that are often observed in tangles.

In a collaboration between their two labs, the scientists demonstrated that exposing neurons to amyloid-beta activates caspases, which then cleave tau at a specific site (Asp421) in the tail end of the molecule. They then showed that this truncated form of tau was much more prone to forming abnormal filaments that resemble tangles, suggesting that amyloid exposure might promote tangle formation through the action of caspases on tau.

To provide additional evidence of the relevance of their findings to Alzheimer´s disease, Binder and Cryns also created a monoclonal antibody that specifically recognizes the truncated form of tau produced by caspases. With this antibody, they demonstrated that tau is commonly cleaved at this site in the tangles in Alzheimer´s disease, indicating that caspase cleavage of tau may play a role in tangle formation in this disease.

By suggesting a new link between the two major brain abnormalities in Alzheimer´s disease, Binder and Cryns hope their work will "provide a common ground between the amyloid and tau proponents and point to the need to consider both of these interrelated pathological events in future studies and therapies."

Indeed, in ongoing studies in their laboratories, they hope to establish the timing of tau cleavage in Alzheimer´s disease brains relative to other molecular events and to determine what role, if any, caspase cleavage of tau has in neuronal cell death.

Binder is professor of cell and molecular biology and a researcher at the Cognitive Neurology and Alzheimer´s Disease Center at the Feinberg School. Cryns is assistant professor of medicine and director of the Cell Death Regulation Laboratory in the department of medicine at the Feinberg School. Their co-researchers on this study include: T. Chris Gamblin; Feng Chen; Angara Zambrano; Aida Abraha; Sarita Lagalwar; Angela L. Guillozet; Meling Lu; Yifan Fu; Francisco Garcia-Sierra; Nichole LaPointe; Richard Miller; and Robert W. Berry, professor of cell and molecular biology.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>