Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice´s chemical "scissors" yield short carbon nanotubes

23.07.2003


Chemists at Rice University have identified a chemical process for cutting carbon nanotubes into short segments. The new process yields nanotubes that are suitable for a variety of applications, including biomedical sensors small enough to migrate through cells without triggering immune reactions.

The chemical cutting process involves fluorinating the nanotubes, essentially attaching thousands of fluorine atoms to their sides, and then heating the fluoronanotubes to about 1,000 Celsius in an argon atmosphere. During the heating, the fluorine is driven off and the nanotubes are cut into segments ranging in length from 20-300 nanometers.

"We have studied several forms of chemical "scissors", including other fluorination methods and processes that involve ozonization of nanotubes," said John Margrave, the E.D. Butcher Professor of Chemistry at Rice University. "With most methods, we see a random distribution among the lengths of the cut tubes, but pyrolytic fluorination results in a more predictable distribution of lengths."



By varying the ratio of fluorine to carbon, Margrave and recent doctoral graduate Zhenning Gu can increase or decrease the proportion of cut nanotubes of particular lengths. For example, some fluorine ratios result in nearly 40 percent of cut nanotubes that are 20 nanometers in length. That´s smaller than many large proteins in the bloodstream, so tubes of that length could find uses as biomedical sensors. By varying the process, Margrave hopes to maximize the production of lengths of nanotubes that are useful in molecular electronics, polymer composites, catalysis and other applications.

Carbon nanotubes are a type of fullerene, a form of carbon that is distinct from graphite and diamond. When created, they contain an array of carbon atoms in a long, hollow cylinder that measures approximately one nanometer in diameter and several thousand nanometers in length. A nanometer is one billionth of a meter, or about 100,000 times smaller than a human hair.

Since discovering them more than a decade ago, scientists have been exploring possible uses for carbon nanotubes, which exhibit electrical conductivity as high as copper, thermal conductivity as high as diamond, and as much as 100 times the strength of steel at one-sixth the weight. In order to capitalize on these properties, researchers and engineers need a set of tools -- in this case, chemical processes like pyrolytic fluorination -- that will allow them to cut, sort, dissolve and otherwise manipulate nanotubes.

Margrave said his team is already at work finding a method to sort the cut tubes by size. One technique they are studying is chromatography, a complex form of filtering. Margrave hopes to re-fluorinate the cut tubes, mix them with a solvent and pour the mixture through a column of fine powder that will trap the shorter nanotubes. Another sorting method under study is electrophoresis, which involves the application of an electric field to a solution.

Margrave´s group is researching other ways that fluorination can be used to manipulate carbon nanotubes, which are chemically stable in their pure form. The highly-reactive fluorine atoms, which are attached to the walls of the nanotubes, allow scientists to create subsequent chemical reactions, attaching other substances to the nanotube walls. In this way, the group has created dozens of "designer" nanotubes, each with its own unique properties.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>