Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolutionary "fast-track" in which the hunted outwit their hunters, could explain why human diseases progress so rapidly

17.07.2003


A water-dwelling rotifer (Brachionas calyciflorus) is surrounded by algae (Chlorella vulgaris) it hopes to eat by waving its cilia, at top, and drawing them into its mouth. In fresh water, these rotifers are barely visible as white specks while the microscopic algae are 100 times smaller. T.Yoshida and R.O. Wayne/Cornell University.


Glass chemostats like these, filled with water, nutrients, predators and prey - were used to demonstrate rapid evolution in a matter of weeks by Cornell biologists, including, from left, Nelson Hairston Jr., Stephen Ellner and Gregor Fussmann. Cornell University Photography Copyright © Cornell University


In the fishbowl of life, when hordes of well-fed predators drive their prey to the brink of extinction, sometimes evolution takes the fast track to help the hunted survive -- and then thrive to outnumber their predators.

This rapid evolution, predicted by Cornell University biologists in computer models and demonstrated with Pac-Man-like creatures and their algae food in laboratory habitats called chemostats, could play an important role in the ecological dynamics of many predator-prey systems, according to an article in the latest issue (July 17, 2003) of the journal Nature .

Physicians, the Cornell biologists say, should keep this rapid evolution in mind when investigating interactions between diseases and victims. As one example, they say, it is useful in trying to understand how HIV, the AIDS virus, manages to evolve so swiftly that development of improved vaccines is extremely difficult.



"Evolution is not just about dinosaurs and apes, but it can occur much more rapidly than we previously thought. Rapid evolution is pervasive, and the list of examples is growing," says Takehito Yoshida, a postdoctoral research fellow in Cornell’s Department of Ecology and Evolutionary Biology and lead author of the Nature article. Yoshida demonstrated the evolutionary principle with near-microscopic, multicelled animals called rotifers that live to gobble much tinier green algae. He notes, "We humans are part of complex ecosystems, and if we think we’re above the effects of evolution, we’re not looking close enough. If we want to understand epidemics and outbreaks of insects such as gypsy moths, we should not ignore the effect of evolution."

Other Cornell authors of the Nature report, illustrated with a cover photo of a rotifer-eating algae and the headline "Fast Food," are Laura E. Jones, a postdoctoral researcher, and Stephen P. Ellner, a professor of ecology and evolutionary biology, who conducted computer modeling of predator-prey dynamics; Gregor F. Fussmann, a postdoctoral researcher during the experiments and now a biologist at the University of Potsdam, Germany; and Nelson G. Hairston Jr., professor of ecology and evolutionary biology. The studies were supported by a grant from the Mellon Foundation.

The rotifers, Brachionas calyciflorus , and the algae, Chlorella vulgaris , were chosen for the experiment because they are the standard, well-documented "lab rats of freshwater predator-prey studies," Hairston says. The eaters and the eaten lived together for months in transparent glass chemostats stocked with nutrients (for the algae) and water.

The Hairston research group had noticed that the highs and lows of predator and prey populations in the chemostats were occurring completely "out of phase," says Yoshida. When rotifer populations were very high -- because previously they had plenty of algae to eat, algal populations hit rock bottom, because they had been consumed almost out of existence. The opposite occurred when algae were super-abundant: There were almost no rotifers around to eat them. Hairston and his collaborators were seeing weeks go by between the very pronounced oscillations in predator and prey populations.

Computer models developed by Ellner and graduate student Kyle Shertzer predicted that only evolution on the part of the prey could account for the out-of-phase, prolonged oscillation effect. Jones and Ellner refined the models to make detailed predictions about the effects of prey evolution, and Yoshida and Fussmann ran experiments in chemostats under two kinds of conditions: In one, all the single-cell algae were genetically identical clones -- essentially one-trick ponies that could not evolve their way out of a tough situation; in the second, the algal population was genetically varied so that somewhere among their tiny green gene pool might be an evolutionary innovation or two that could save them.

After running the chemostats for months and counting predator and prey populations day by day, the computer model’s prediction proved correct. Populations of a single algal clone quickly rose and fell almost in synchrony with the numbers of rotifers. But the algae with some genetic variation to draw on enjoyed longer periods when they were abundant and their predators were few -- along with agonizingly long periods when they struggled to rebuild their populations.

Instead of millions of years, the algae were evolving in a few weeks. But exactly how had they changed?

"We’re not sure," Hairston says. "We think that somehow they made themselves indigestible. They figured out how to pass straight through the rotifer gut without being digested and survived to make lots more of themselves. Rapid evolution got them out of a tight spot."

In one respect the joke is on the fast-evolving algae, Hairston notes, because they had to give up something to become indigestible: They became slow-growing algae relative to their kin. As a result, the next time they compete for food resources, the slow-growing, hard-to-eat algae will be at a disadvantage, and the more edible algae will thrive, allowing the cycle to repeat indefinitely.

Ellner suggests that this cycle of rapid evolution -- between defense and vulnerability -- could have parallels in human diseases. "There’s hardly anyone left in our [human] population who had resistance or developed it during the 1918 flu epidemic," he says. "Perhaps the time is now ripe for a return of those strains or their relatives."

Jones sees some hope that medical researchers will come to recognize the role of rapid evolution. "HIV is evolving so quickly that researchers are struggling to make an effective vaccine. As we say in our report, evolution can substantially alter predator-prey dynamics. Attempts to understand population oscillations cannot afford to neglect the potential effects of ongoing, rapid evolution."

Contact: Roger Segelken, Office: +1-607-255-9736, hrs2@cornell.edu

Roger Segelken | Cornell University News Service
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>