Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers scientists post a genetic road map to sources of disease

16.07.2003


Rutgers geneticist Tara Matise and her colleagues have produced a map that will help pinpoint the genes linked to such serious diseases as diabetes, high blood pressure and schizophrenia.



This linkage map is based on the amount of the interaction or recombination taking place among nearly 3,000 genetic markers whose positions are known. The markers used for the map are single-nucleotide polymorphisms (SNPs) – the variations of a gene that people may carry at one point on their DNA.

A paper describing the linkage map will appear in the August 2003 issue of the American Journal of Human Genetics and is currently available online. Matise is first author on the paper, with Assistant Professor Steven Buyske and graduate student Chunsheng He, both from Rutgers, The State University of New Jersey, also among the authors.


Matise pointed out that SNPs provide a shortcut for pinpointing genes that may contribute to disease because the SNPs are both plentiful and easy to analyze. Many SNPs lie within genes associated with a disease, while others are near such genes, she added.

"Our challenge was to calculate the recombination distance – a measure of interaction – between the markers," said Matise, an associate research professor in the department of genetics. "This is the first map of its kind, a genomewide SNP linkage map, and it provides the kind of data we need to conduct our analyses in the search for disease genes.

"Since our map is much more dense and has more markers than other kinds of maps, we wanted to see how good it really is. We did some calculations to compare the information content of our SNP map versus some existing maps commonly used for genome screening," said Matise. "It turns out that our map is equivalent to or better than the other maps that are currently used."

Matise explained that without this kind of map, SNP-based linkage screening in humans – a procedure by which the entire genome is scanned for evidence of linkage to a disease – cannot be done. This screening is currently performed using specialized and customized high-throughput genotyping machines commercially available from companies including Applied Biosystems, Illumina and Amersham Biosciences.

But in the journal article, Matise and her co-authors wrote, "It is anticipated that the successful identification of a set of SNPs tailored for linkage analysis, such as that presented here, will stimulate development of mass-produced (i.e., less expensive) means for large-scale genotyping with this same marker set."

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>