Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key step allowing cell migration

10.07.2003


University of North Carolina at Chapel Hill researchers have discovered a prime regulator of the mechanism by which human cells migrate in health and in illness, a process crucial to sustaining life.



Their work helps explain how cells can stick to a surface long enough to pull themselves and move forward and then release that grip so that they can continue and not be anchored to one spot.

Cai Huang, a graduate student about to complete his doctorate in cell and developmental biology at the UNC School of Medicine, led the project. He and colleagues showed for the first time that an important enzyme known as JNK, which is involved in many cell regulatory pathways, also controls a central and complex step in the biochemical process.


A report on their work appears in the July 10 issue of Nature, the top British science journal. Co-authors are Drs. Ken Jacobson and Michael Schaller, professors of cell and developmental biology; Dr. Zenon Rajfur, research assistant professor of cell and developmental biology; and Dr. Christoph Borchers, assistant professor of biochemistry and biophysics and faculty director of the UNC Proteomics Core Facility.

"Cell migration is involved in a variety of normal and pathological events in life, including embryo development, wound healing and the abnormal, life-threatening movement of cancer cells that doctors call metastasis," Jacobson said. "Cai’s work demonstrates how phosphorylation of a single serine residue of an important protein component of cell adhesion, paxillin, can regulate cell migration."

Phosphorylation is a major signal in biology that involves joining a phosphorus group to specific amino acids, one of the ways living things regulate functions of proteins, he said. A serine residue is one of the 20 or so amino acids that are linked together in various combinations to form the many different proteins found in cells.

"For cells to be able to move, they must have adhesions that can break down from time to time," Jacobson said. "If they were permanent--in other words too sticky--the cell would be stuck. The new work shows this phosphorylation event is important in signaling the cell to disassemble some of its adhesions so that it can move."

The experiments were done on both fish scale cells and rat bladder tumor cells. They identify a specific biochemical pathway by which signals from outside cells--provided by hormones and growth factors--can regulate cell locomotion, he said. Understanding the complex cascade of molecular events could become a key to solving the mystery of how to stop cancer cells in their tracks, like nailing shoes to the floor.

"Another significance of this study is beyond cell migration," Huang said. "Previously, JNK was thought to function solely in cell nuclei. Our finding that paxillin, which is called a focal adhesion protein, is a target for the JNK enzyme indicates that JNK also plays an important role in cytoplasm, which is outside the nucleus."

Thus, the experiments greatly expand knowledge of what JNK does, he said.

"We expect to identify more cytoplasmic JNK targets in the near future," Huang said.



Besides cell and developmental biology, the researchers are affiliated with UNC’s Comprehensive Center for Inflammatory Disorders, Lineberger Comprehensive Cancer Center and department of biochemistry and biophysics.

Grants from the National Institutes of Health, the Cell Migration Consortium and the National Institute for Dental and Cranial Research supported the studies.

Note: Jacobson and Huang can be reached at 919-966-5703, frap@med.unc.edu or cai_huang@med.unc.edu.

David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>