Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant genes imported from unrelated species more often than previously thought, IU biologists find

10.07.2003


Scientists have long thought gene exchange between individuals of unrelated species to be an extremely rare event among eukaryotes -- the massive group of organisms that counts among its members humans, oak trees, kelp and mushrooms -- throughout the group’s 2 billion year history.



But a new Indiana University Bloomington study in this week’s Nature suggests that such genetic events, called horizontal gene transfers, have happened more often than previously thought during the evolution of flowering plants. The finding hints other eukaryotes have had significant genetic influence from completely unrelated species.

"It appears horizontal gene transfer occurs for just about any gene in the plant mitochondrial genome," said biologist and Class of 1955 Endowed Professor Jeffrey Palmer, who led the research. "There is no reason to believe that this finding would apply only to plants. We already know from past studies that other eukaryotes experience the same mechanisms of horizontal transfer for certain special pieces of DNA called transposable elements. Our results now extend this phenomenon to the thousands of ordinary genes in a genome."


It has been common knowledge for years that horizontal gene transfer among bacteria is extremely common. Some scientists believe that as much as 25 percent of certain bacterial species’ chromosomal DNA has been acquired by way of horizontal transfer.

In eukaryotes, the rule remains that individuals get their genes from parents intergenerationally through the more familiar process called vertical transmission. But Palmer said scientists have probably underestimated the rate at which non-traditional gene transfer happens in eukaryotes.

"While our data set was small and real rates of eukaryotic horizontal gene transfer were therefore hard to predict, we can infer that even conservatively, horizontal gene transfer must have happened in flowering plants thousands of times," Palmer said.

One of the assumptions scientists make when comparing DNA from different species is that the DNA has followed basic lines of heredity connected in the past by a common ancestor. If DNA used in these gene studies does not descend vertically, from parent to offspring, but horizontally, by jumping from another lineage, analyses might turn up confusing or misleading evolutionary relationships between species. But Palmer isn’t worried about that.

"We don’t believe horizontal gene transfer happens often enough to throw a monkey wrench into molecular genealogical studies," he said.

While the mechanisms of horizontal gene transfer are still unknown, various explanations suggest that viruses, bacteria and fungi pack errant genetic material, or that accidental cross-species mating may play a role. However it happens, Palmer said there is no question it doeshappen. Many scientists have reported unexpectedly finding one species’ gene in another species with no reasonable explanation except horizontal gene transfer.

After encountering unique gene sequences along circular mitochondrial DNA chromosomes in three flowering plant species, Palmer and his team sought to determine the source of the anomalous genetic material. Part of the mystery was that closely related flowering plants did not possess the same gene sequences. Most of the genes the researchers examined encode parts of ribosomes, tiny assembly plants that make proteins by connecting amino acids.

Palmer’s team amassed mitochondrial gene sequence data from about 100 angiosperm species and looked for sequence similarities between them. In creating a tree of relatedness between the sequences, the scientists found that the mitochondrial genes from five flowering species -- kiwi fruit, honeysuckle, birch, bloodroot and Amborella (the most primitive flowering plant in existence) -- appeared far more related to unrelated species than to species more closely related to them, strongly suggesting that the four species had acquired these particular genes by way of horizontal transfer.

In the case of the bloodroot, the researchers were astonished to find a hybrid, "chimeric" mitochondrial gene. Half of this gene was captured by horizontal transfer from an unrelated plant over 100 million years distant in time, while the other half had been transmitted faithfully from parent to offspring in the lineage leading to bloodroot. "This result was so surprising, our first thought was that we’d made a mistake," Palmer said. "Once it was confirmed we had not made an error, we understood that what we’d found was very exciting."


###
Ulfar Bergthorsson (Indiana University Bloomington), Keith Adams (now at Iowa State University) and Brendan Thomason (now at the University of Michigan School of Medicine) also contributed to the study. It was funded by a grant from the National Institutes of Health.

To speak with Palmer or Bergthorsson, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>