Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Bubbles: New tool in chemical sensing?

10.07.2003


As the old Hawaiian love song says, tiny bubbles really do make some people feel fine. Chemists, that is. But there is no wine involved this time, just water.

National Institute of Standards and Technology (NIST) chemists reported in the June 24 online edition of Langmuir that a process called microboiling shows promise for quick, simple and inexpensive chemical sensing. The process involves the formation of tiny vapor bubbles on a 200-nanometer-thick film of precious metal immersed in water and heated rapidly. By coating the metal microheater with a single layer of water-repelling molecules, the scientists dramatically altered the microboiling behavior. Bubbles formed more obviously and at lower temperatures, and the water in immediate contact with the metal got much hotter.

"It’s astounding to me that we changed one functional group on the surface of that microheater and saw a dramatic change in the boiling behavior," says Michael Tarlov, a co-author of the paper.



The finding means that changes in boiling behavior should be useful for detecting specific substances. The water surrounding a microheater designed to bond with DNA or proteins, for example, might boil at a different temperature if the target molecules were attached to the coating. A change can be measured in just 5 microseconds, much faster than typical lab techniques. NIST scientists have found that the technique can detect surfactants, such as those used in detergents, and are studying its use in microfluidic (or lab-on-a-chip) devices.

The research also has other potential spin-offs, such as the use of designer coatings to improve efficiency in boilers and heat exchangers and the use of microheaters to simplify chemical manufacturing.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>