Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Bubbles: New tool in chemical sensing?

10.07.2003


As the old Hawaiian love song says, tiny bubbles really do make some people feel fine. Chemists, that is. But there is no wine involved this time, just water.

National Institute of Standards and Technology (NIST) chemists reported in the June 24 online edition of Langmuir that a process called microboiling shows promise for quick, simple and inexpensive chemical sensing. The process involves the formation of tiny vapor bubbles on a 200-nanometer-thick film of precious metal immersed in water and heated rapidly. By coating the metal microheater with a single layer of water-repelling molecules, the scientists dramatically altered the microboiling behavior. Bubbles formed more obviously and at lower temperatures, and the water in immediate contact with the metal got much hotter.

"It’s astounding to me that we changed one functional group on the surface of that microheater and saw a dramatic change in the boiling behavior," says Michael Tarlov, a co-author of the paper.



The finding means that changes in boiling behavior should be useful for detecting specific substances. The water surrounding a microheater designed to bond with DNA or proteins, for example, might boil at a different temperature if the target molecules were attached to the coating. A change can be measured in just 5 microseconds, much faster than typical lab techniques. NIST scientists have found that the technique can detect surfactants, such as those used in detergents, and are studying its use in microfluidic (or lab-on-a-chip) devices.

The research also has other potential spin-offs, such as the use of designer coatings to improve efficiency in boilers and heat exchangers and the use of microheaters to simplify chemical manufacturing.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>