Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal plant shows scientists path to plant, animal development

09.07.2003


A pickle-shaped root is revealing how plants develop from embryos to adults and also may hold answers about cancer cell growth.


Joe Ogas, an associate professor of biochemistry, displays a dish of two-day-old arabidopsis seedlings in his Purdue University research lab. Using the plants, Ogas hopes his research will provide clues about how cancer cells grow. (Agricultural Communications photo/Tom Campbell)



Purdue University researchers have uncovered nine specific genes that are shut off before plants make the developmental transition from the embryonic stage to adulthood. Results of the latest study are published in the July issue of The Plant Journal.

"We now have data supporting the hypothesis that the gene PKL is a master regulator of genes that promote embryonic identity," said Joe Ogas, an associate professor of biochemistry. "Some of the genes we identified are known to control plant embryo development. They tell the plant, ’be a seed.’ Then PKL says, ’You’re done being a seed,’ and turns them off."


The genes the scientists identified are part of a class called LEAFY COTYLEDON (LEC). The researchers call them the "master regulators" of embryogenesis, the formation and growth of the embryo. This new study suggests that PKL is the master switch that turns LEC genes off so that the plant can develop the root and leaf systems of adult plants.

"We hope to identify new factors common to both plants and animals that researchers looking at human development haven’t yet found," Ogas said. "These new factors might then provide insight into regulation of gene expression in humans during normal developmental processes and during abnormal events such as cancer."

It has been shown that a protein from a specific family plays an analogous role in controlling development in both the laboratory plant Arabidopsis and the laboratory animal C. elegans, a tiny transparent worm.

"This is our first attempt to understand how PKL works as a regulator of gene expression," Ogas said. "The neat thing about this work is that it’s also shown that in animal systems, a protein homologous, or corresponding, to PKL is also involved in turning off developmentally regulated genes. So, we’re finding similar regulatory roles for both human and plant proteins."

Ogas and his team found the embryo-promoting genes by studying a strain of Arabidopsis in which PKL is abnormal, or mutated. The mutated gene, designated as lowercase pkl, was unable to repress the embryogenesis genes. The result is a plant that is dwarfed compared to a normal plant, has a pickle-shaped root, and characteristics of both an embryo and an adult plant.

Ogas said they found that embryo-promoting genes are expressed at inappropriately high levels when PKL has not turned them off. This results in seedlings that still have embryonic traits.

The researchers believe they now can turn PKL on and off and that they know the chronology of steps needed to regulate genes that foster embryonic behavior.

The researchers studied 8,000 Arabidopsis genes to determine the specific ones that would only turn off if PKL is fully functional. Once PKL switches those embryonic genes off, the plants can proceed into normal adult development.

Ogas and his team used microarray analysis, in which bits of DNA are placed on a microchip, to identify nine genes involved in the development pathway. They also found that a number of genes that may be important to plants in the embryonic stage apparently are not affected by PKL.

"It is likely that some other proteins that act in this PKL-development pathway are used in animal systems," Ogas said. "Thus, some of the lessons that we learn by working in Arabidopsis also might be applicable to regulation of human gene expression."

The other researchers involved in this study were: postdoctoral student Stanley Dean Rider Jr. and graduate student James Henderson, both of the Purdue Department of Biochemistry; assistant professor Jeanne Romero-Severson of the Purdue Department of Forestry and Natural Resources and the Computational Genomics Center; and research scientist Ronald Jerome and professor Howard Edenberg, both of the Indiana University Department of Biochemistry and Molecular Biology.

The Indiana 21st Century Research and Technology Fund, the Indiana Genomics Initiative Program, the Lilly Endowment Inc., and BASF Inc. provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Joe Ogas, (765) 496-3969, ogas@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030707.Ogas.pickle.html
http://www.blackwell-synergy.com/links/doi/10.1046/j.1365-313X.2003.01783.x/full/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>