Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal plant shows scientists path to plant, animal development

09.07.2003


A pickle-shaped root is revealing how plants develop from embryos to adults and also may hold answers about cancer cell growth.


Joe Ogas, an associate professor of biochemistry, displays a dish of two-day-old arabidopsis seedlings in his Purdue University research lab. Using the plants, Ogas hopes his research will provide clues about how cancer cells grow. (Agricultural Communications photo/Tom Campbell)



Purdue University researchers have uncovered nine specific genes that are shut off before plants make the developmental transition from the embryonic stage to adulthood. Results of the latest study are published in the July issue of The Plant Journal.

"We now have data supporting the hypothesis that the gene PKL is a master regulator of genes that promote embryonic identity," said Joe Ogas, an associate professor of biochemistry. "Some of the genes we identified are known to control plant embryo development. They tell the plant, ’be a seed.’ Then PKL says, ’You’re done being a seed,’ and turns them off."


The genes the scientists identified are part of a class called LEAFY COTYLEDON (LEC). The researchers call them the "master regulators" of embryogenesis, the formation and growth of the embryo. This new study suggests that PKL is the master switch that turns LEC genes off so that the plant can develop the root and leaf systems of adult plants.

"We hope to identify new factors common to both plants and animals that researchers looking at human development haven’t yet found," Ogas said. "These new factors might then provide insight into regulation of gene expression in humans during normal developmental processes and during abnormal events such as cancer."

It has been shown that a protein from a specific family plays an analogous role in controlling development in both the laboratory plant Arabidopsis and the laboratory animal C. elegans, a tiny transparent worm.

"This is our first attempt to understand how PKL works as a regulator of gene expression," Ogas said. "The neat thing about this work is that it’s also shown that in animal systems, a protein homologous, or corresponding, to PKL is also involved in turning off developmentally regulated genes. So, we’re finding similar regulatory roles for both human and plant proteins."

Ogas and his team found the embryo-promoting genes by studying a strain of Arabidopsis in which PKL is abnormal, or mutated. The mutated gene, designated as lowercase pkl, was unable to repress the embryogenesis genes. The result is a plant that is dwarfed compared to a normal plant, has a pickle-shaped root, and characteristics of both an embryo and an adult plant.

Ogas said they found that embryo-promoting genes are expressed at inappropriately high levels when PKL has not turned them off. This results in seedlings that still have embryonic traits.

The researchers believe they now can turn PKL on and off and that they know the chronology of steps needed to regulate genes that foster embryonic behavior.

The researchers studied 8,000 Arabidopsis genes to determine the specific ones that would only turn off if PKL is fully functional. Once PKL switches those embryonic genes off, the plants can proceed into normal adult development.

Ogas and his team used microarray analysis, in which bits of DNA are placed on a microchip, to identify nine genes involved in the development pathway. They also found that a number of genes that may be important to plants in the embryonic stage apparently are not affected by PKL.

"It is likely that some other proteins that act in this PKL-development pathway are used in animal systems," Ogas said. "Thus, some of the lessons that we learn by working in Arabidopsis also might be applicable to regulation of human gene expression."

The other researchers involved in this study were: postdoctoral student Stanley Dean Rider Jr. and graduate student James Henderson, both of the Purdue Department of Biochemistry; assistant professor Jeanne Romero-Severson of the Purdue Department of Forestry and Natural Resources and the Computational Genomics Center; and research scientist Ronald Jerome and professor Howard Edenberg, both of the Indiana University Department of Biochemistry and Molecular Biology.

The Indiana 21st Century Research and Technology Fund, the Indiana Genomics Initiative Program, the Lilly Endowment Inc., and BASF Inc. provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Joe Ogas, (765) 496-3969, ogas@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030707.Ogas.pickle.html
http://www.blackwell-synergy.com/links/doi/10.1046/j.1365-313X.2003.01783.x/full/

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>