Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep deprivation within five hours of learning impairs memory consolidation in mice

09.07.2003


Scientists at the University of Pennsylvania have found new support for the age-old advice to "sleep on it." Mice allowed to sleep after being trained remembered what they had learned far better than those deprived of sleep for several hours afterward.



The researchers also determined that the five hours following learning are crucial for memory consolidation; mice deprived of sleep five to 10 hours after learning a task showed no memory impairment. The results are reported in the May/June issue of the journal Learning & Memory.

"Memory consolidation happens over a period of hours after training for a task, and certain cellular processes have to occur at precise times," said senior author Ted Abel, assistant professor of biology at Penn. "We set out to pinpoint the specific window of time and area of the brain that are sensitive to sleep deprivation after learning."


Abel and his colleagues found that sleep deprivation zero to five hours after learning appeared to impair spatial orientation and recognition of physical surroundings, known as contextual memory. Recollection of specific facts or events, known as cued memory, was not affected. Because the brain’s hippocampus is key to contextual memory but not cued memory, the findings provide new evidence that sleep helps regulate neuronal function in the hippocampus.

Abel’s group studied fear conditioning in mice. Animals received a mild electric shock in conjunction with one of two different types of stimuli. Some mice were placed in a distinctive setting before receiving a shock, generating fear of that particular location. Others heard a tone shortly before a shock was administered, causing them to fear the tone.

Abel assessed the permanence of this fear conditioning by observing how frequently the mice froze -- remaining completely motionless for a number of seconds -- when exposed 24 hours later to the cue associated with the shock. Even when deprived of sleep, mice exposed to the audible tone remained fearful the following day.

But mice that had learned to associate a general physical environment with administration of an electric shock were less likely to do so after sleep deprivation. Sleep-deprived mice spent just 4 percent of their time frozen when returned to this environment the following day, compared to 15 percent among mice whose sleep was not disrupted in the five hours immediately after shock administration.

"It has been suggested that sleep serves a variety of physiological functions, ranging from energy conservation to refreshing the immune system," Abel said. "Another important hypothesis is that sleep regulates neuronal function during memory consolidation. Our findings provide support for this theory, and, by implicating hippocampal-dependent tasks during a specific time window, we have taken an initial step in clarifying the neural effects of sleep deprivation."


###
Abel’s co-authors are Laurel A. Graves and Allan I. Pack of Penn’s School of Medicine and Penn undergraduate Elizabeth A. Heller.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>