Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid movements of living biomolecules visualised

24.06.2003


Dutch researcher Chris Molenaar has made the rapid movements of proteins, DNA and RNA molecules visible in living cells. With this technique researchers can study the dynamics of biomolecules in their natural environment.



Molenaar developed a method which makes it possible to follow the movements of RNA molecules in living cells. The researcher also made the movements and interactions between proteins in living cells visible with the aid of the revolutionary "Green Fluorescent Protein".

Much of the present knowledge about molecular compositions of the cell and the mechanisms in which biomolecules such as DNA, RNA and proteins play a role, is based on experiments in tests tubes with biomolecules isolated from cells. However, with these molecules it is difficult to simulate the behaviour in a living cell. Dynamic processes in the cell can only be understood with living cell microscopy.


Molenaar used fluorescent probes which specifically bind to the molecule he wanted to study. By using a fluorescent microscope to examine where a fluorescent molecule was at different times, the movement of the structures containing these molecules could be followed. For example, the researcher followed the tips of chromosomes (telomeres) in three dimensions over the course of time.

The mobility of populations of molecules was visualised using FRAP (Fluorescence Recovery After Photobleaching). The fluorescent molecules in a small part of the cell are destroyed when a laser is focussed on them. However, although it no longer fluoresces, the biomolecule to which the fluorescent molecule is attached remains intact. The rate at which the fluorescent molecules from the surroundings move into this dark area says something about the mobility of, for example, a certain type of RNA or protein. This mobility in turns provides further information about the functioning of the molecules.

In addition to the movement of the biomolecules, Molenaar also visualised the interaction of different biomolecules. For this he used FRET microscopy (Fluorescence Resonance Energy Transfer). When two fluorescent molecules approach to within several nanometres of each other, one molecule can transfer energy to the other. This energy transfer causes a change in the colour of the fluorescence. Molecular interactions occur within distances of several nanometres. This distance cannot be resolved with a normal light microscope.


For further information please contact Dr Chris Molenaar (Department of Molecular Cell Biology, Leiden University Medical Center), tel. 31-71-527-6278, e-mail: c.molenaar@lumc.nl. The doctoral thesis was defended on 18 June 2003. Dr Molenaar’s supervisor was Prof. H.J. Tanke.

Image at www.nwo.nl/news. A short film can also be found in which it can be seen how a fluorescent probe specifically binds to the desired biomolecules (RNA) immediately after being injected into a living cell.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>