Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid movements of living biomolecules visualised

24.06.2003


Dutch researcher Chris Molenaar has made the rapid movements of proteins, DNA and RNA molecules visible in living cells. With this technique researchers can study the dynamics of biomolecules in their natural environment.



Molenaar developed a method which makes it possible to follow the movements of RNA molecules in living cells. The researcher also made the movements and interactions between proteins in living cells visible with the aid of the revolutionary "Green Fluorescent Protein".

Much of the present knowledge about molecular compositions of the cell and the mechanisms in which biomolecules such as DNA, RNA and proteins play a role, is based on experiments in tests tubes with biomolecules isolated from cells. However, with these molecules it is difficult to simulate the behaviour in a living cell. Dynamic processes in the cell can only be understood with living cell microscopy.


Molenaar used fluorescent probes which specifically bind to the molecule he wanted to study. By using a fluorescent microscope to examine where a fluorescent molecule was at different times, the movement of the structures containing these molecules could be followed. For example, the researcher followed the tips of chromosomes (telomeres) in three dimensions over the course of time.

The mobility of populations of molecules was visualised using FRAP (Fluorescence Recovery After Photobleaching). The fluorescent molecules in a small part of the cell are destroyed when a laser is focussed on them. However, although it no longer fluoresces, the biomolecule to which the fluorescent molecule is attached remains intact. The rate at which the fluorescent molecules from the surroundings move into this dark area says something about the mobility of, for example, a certain type of RNA or protein. This mobility in turns provides further information about the functioning of the molecules.

In addition to the movement of the biomolecules, Molenaar also visualised the interaction of different biomolecules. For this he used FRET microscopy (Fluorescence Resonance Energy Transfer). When two fluorescent molecules approach to within several nanometres of each other, one molecule can transfer energy to the other. This energy transfer causes a change in the colour of the fluorescence. Molecular interactions occur within distances of several nanometres. This distance cannot be resolved with a normal light microscope.


For further information please contact Dr Chris Molenaar (Department of Molecular Cell Biology, Leiden University Medical Center), tel. 31-71-527-6278, e-mail: c.molenaar@lumc.nl. The doctoral thesis was defended on 18 June 2003. Dr Molenaar’s supervisor was Prof. H.J. Tanke.

Image at www.nwo.nl/news. A short film can also be found in which it can be seen how a fluorescent probe specifically binds to the desired biomolecules (RNA) immediately after being injected into a living cell.

The research was funded by the Netherlands Organisation for Scientific Research.

Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>