Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barrel structure in globular proteins may transport small molecules

11.06.2003


The ability of proteins to guide small molecules to reaction sites and across membranes is essential to many metabolic pathways, but the process is not well understood. Now, scientists at the University of Illinois at Urbana-Champaign have shown that a globular protein with a barrel structure can direct small molecules in much the same fashion as a membrane protein.



Chemistry professor Zaida Luthey-Schulten, graduate student Rommie Amaro, and Emad Tajkhorshid, assistant director of physics research at the university’s Beckman Institute for Advanced Science and Technology, used molecular dynamics simulations to study the movement of ammonia during the biosynthesis of the amino acid histidine. A paper describing the results is to be published the week of June 9 in the Online Early Edition of the Proceedings of the National Academy of Sciences. The print version will appear at a later date.

Most living organisms are composed of a set of 20 amino acids, the so-called "building blocks of life." Each of these amino acids is produced through what can be thought of as a biological assembly line. Starting with a small part, subsequent parts are added or removed by enzymes until the final compound is formed. These final compounds become the major components of proteins and tissues.


For humans, the 20 amino acids can be divided into two groups: Eleven are made by the human body and are called "nonessential"; the other nine are not made by the body and are called "essential." Despite their names, all 20 amino acids are crucial to human health. One of the main reasons nutritionists advise people to eat balanced diets is because the nine essential amino acids must be ingested and are found in different foods.

Histidine is one of the nine essential amino acids. Because histidine is a critical component of nearly all living systems, understanding how it is made is of great interest. Histidine’s biological assembly line consists of nine steps. Of special interest is the fifth step, where an event called substrate channeling may occur.

"Imagine that you need to move an object from one point to another, but there is a mountain standing in the way," Amaro said. "You could drive over the mountain, you could drive around it, or you could make a tunnel and drive through it. The tunneling option, referred to as substrate channeling in proteins, is what appears to be happening in this fifth step."

Although substrate channeling is a recurring theme in biological organisms, "this is the first time this particular enzyme -- a so-called alpha-beta barrel -- has been suggested to use its barrel structure as this type of channel," Amaro said.

In bacterial cells, the fifth step of histidine synthesis begins when two proteins (hisH and hisF) come together. Once the proteins dock, a reaction occurs at the "active site" of hisH, releasing a molecule of ammonia. Studies have suggested that this ammonia molecule then diffuses across the interface and enters the hisF protein.

"This protein looks like an empty barrel; it has a narrow channel running down the center," Luthey-Schulten said. "The ammonia enters the channel, travels through it, and is then used in another reaction that takes place at the opposite end."

Using molecular dynamics simulations developed in the Theoretical and Computational Biophysics group at the Beckman Institute, and in conjunction with the National Center for Supercomputing Applications, the researchers were able to simulate this protein function.

"We applied a force to ammonia to pull it through the channel of the hisF protein and then watched what happened," Luthey-Schulten said. "Our studies show that it is indeed possible -- even energetically favorable -- for ammonia to use the barrel as a channel to undergo protected and directed travel from one active site to another."

Another interesting aspect of the system is that there appears to be a "gate" at the mouth of the barrel. "In all of the available crystal structures, the gate appears to be closed," Amaro said. "When the gate is closed, it is nearly impossible for the ammonia molecule to pass through. Therefore, the reaction -- and more importantly, the synthesis of histidine -- can happen only when the gate opens."

The exact mechanism of the gate opening is not known, Luthey-Schulten said. "We modeled one possible open-gate configuration and found that the energy required for the ammonia to pass into the barrel was much more reasonable."

The simulations suggest that globular proteins, like membrane proteins, can exploit their structure to transport small molecules.

"This is an excellent example of channeling between two catalytic enzymatic sites," Tajkhorshid said. "Generating the ammonia molecule and then delivering it directly to the reaction site means it won’t get lost in solution. This is a very efficient way of increasing the rate of a chemical reaction."


###
The National Science Foundation funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/0610ammonia.html
http://www.beckman.uiuc.edu/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>