Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Growing green gold


A new way to make gold form inside the cells of a micro-organism is published today in the Institute of Physics journal Nanotechnology. Researchers from the National Chemical Laboratory and the Armed Forces Medical College, both in Pune, India, have been using “green chemistry” to develop an eco-friendly way to make tiny gold particles without using toxic chemicals.

Such gold nanoparticles of uniform size can be used in labelling proteins, nucleic acids and other biomolecules, which could lead to new ways of detecting disease, controlling genes and enzymes, and delivering therapeutic drugs directly to the nucleus of the cell. The technology can also be used in developing nanomaterials and nanoelectronics.

The research group took a micro-organism called Rhodococcus from a fig tree, and exposed it to a liquid containing gold ions (which are electrically charged gold particles, rather than neutral ones). They found that the micro-organism caused the gold ions to gain electrons, thereby forming gold nanoparticles within the micro-organism’s cells. These nanoparticles are more concentrated and more uniform in size than particles biosynthesised by previous methods that used a fungus. Although the exact reaction that causes the gold to form is not yet fully known, the group believe that the Rhodococcus species gives better results because it is a certain type of micro-organism (an actinomycete) that shows characteristics of both bacteria and fungi, rather than just being a fungus.

“I am extremely pleased with the formation of these gold nanoparticles. They are mainly between about nine and twelve nanometres in diameter, with a few larger particles. That’s about eight thousand times smaller than a human hair,” said Dr. Murali Sastry from the National Chemical Laboratory, India. “This is much more uniform than the particles formed using other biological methods. Having uniformly sized particles will be needed if we are to use this method in biodiagnosis using gold nanoparticles or to deliver therapeutic drugs.”

Following the biosynthesis of gold nanoparticles in Rhodococcus species, its cells continued to multiply normally, as the ions used were not toxic to the cells – which is important as more gold would be formed as the cells multiplied.

The group will soon be looking into making the nanoparticles on a large scale, which could be attained by genetically modifying actinomycetes to produce more of the enzymes which cause the gold to form.

Michelle Cain | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>