Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Plant Cell Biologists Show that Plants Use Unique Mechanisms to Process and Degrade Proteins

06.06.2003


Natasha Raikhel, Distinguished Professor of Plant Cell Biology at UC Riverside, reports in the Proceedings of the National Academy of Sciences the mechanisms plants use to process and degrade proteins. (Photo credit: N. Raikhel.)


In plants, many proteins are degraded or activated within the vacuole, a large water and nutrient-filled vesicle found in plant cells that helps maintain the shape of plant cells and that stores food molecules. The manner by which this degradation or activation occurs, however, is uncertain.

In the June 10, 2003, issue of the Proceedings of the National Academy of Sciences (PNAS), however, scientists from UC Riverside identify a key protein, vacuolar processing enzyme or VPEg, in Arabidopsis thaliana (thale cress) that is required for this process.

"Plants that do not have VPEg fail to accumulate the active form of an important vacuolar enzyme and fail to degrade a variety of proteins that would not normally accumulate to high levels within vacuoles, particularly those of older tissues," said Natasha Raikhel, Distinguished Professor of Plant Cell Biology at UC Riverside and the principal investigator of the research project.



The findings, which would interest researchers studying changes that occur within plants during the aging process as well as those studying the role of vacuoles in plants, indicate that VPEg is likely involved in a variety processes that range from proper development during aging to stress and defense responses.

This is an important discovery because it demonstrates a previously unknown mechanism through which plants control protein composition of the vacuole. "Plants cannot live without vacuoles," explained Raikhel. "Since the vacuole plays such a central role in a wide variety of physiological processes, the VPEg pathway for protein processing and degradation may have a large impact on many of these processes."

The research, funded by the National Science Foundation, was performed from 2001-2003 in the UC Riverside Department of Botany and Plant Sciences and the Center for Plant Cell Biology (CEPCEB). Besides Raikhel, the co-authors of the PNAS paper are Enrique Rojo, Jan Zouhar, Clay Carter and Valentina Kovaleva, all of whom are researchers in Raikhel’s laboratory.

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=607
http://www.cepceb.ucr.edu/
http://www.cnas.ucr.edu/

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>