Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers offer new theories about memory

06.06.2003


For decades, scientists have disagreed about the way the brain gathers memories, developing two apparently contradictory concepts. But newly published research by a team of scientists at Rutgers-Newark’s Center for Molecular and Behavioral Neuroscience (CMBN) indicates that both models of memory may be partially correct – and that resolving this conflict could lead to new approaches for the treatment of memory disorders such as Alzheimer’s Disease.



The dispute has centered on how the hippocampus – a structure deep inside the brain – processes new information from the senses and stores it. Some researchers – such as Mark Gluck and Catherine Myers, co-directors of the Memory Disorders Project at the CMBN – have been proponents of "incremental memory," viewing the acquisition of memory as a learning process that occurs over time.

"If you see thunder and lightning occur together once, that may be seen as a coincidence," Myers observed. "But the more often you see them happen at the same time, the more likely you are to remember them as related parts of one event."


Other researchers, such as Martijn Meeter, also with the CMBN, have focused on "episodic memory," which is more like memorization. This model argues that "an event only has to occur once and you’ll remember it," Myers said. "If someone tells you a name, you may not remember it for a long time, but you will remember it initially at least." More dramatic events tend to be stored in long-term memory most easily. But Gluck, Myers and Meeter are developing a computer model that suggests the two methods of storing memory work together, and present their novel ideas in a paper published in the June issue of the journal Trends in Cognitive Science. Research using new classes of drugs that affect specific portions of a laboratory rat’s hippocampus and the region around it with greater accuracy has led the Rutgers-Newark team to propose a new interpretation of how the brain organizes all the sensory input that becomes memories.

That input goes through a kind of assembly line as the brain gathers it and directs it to the hippocampus, Myers said. Before reaching the hippocampus itself, the information all passes through a structure adjacent to the hippocampus called the entorhinal cortex for processing. The two parts of the brain lie side by side, resembling two halves of a hotdog bun. The new paper by the Rutgers-Newark investigative team floats the possibility that the entorhinal cortex – part of the "hippocampal region" but not part of the hippocampus itself – handles incremental learning. The main task of the hippocampus may be storing episodic memory.

"Understanding how the entorhinal cortex differs in function from the hippocampus is a hugely important and timely problem in the neurobiology of memory," Gluck said. "The entorhinal cortex is among the very first brain regions that are damaged in the earliest stages of Alzheimer’s Disease, so understanding it is crucial to measuring the effectiveness of novel drugs to fight AD."

Until very recently, write the researchers, only broad generalizations could be made about how memory was processed in the general hippocampal region. When humans suffer brain injuries, note the Rutgers-Newark scientists in their paper, "the damage is seldom limited to a single brain structure." As a result, some memory functions long assumed to take place in the hippocampus alone may occur in surrounding parts of the brain, such as the entorhinal cortex.

A coordinated effort between different portions of the brain, taken as a whole, may contribute to what we think of as memory, Myers observed. "It’s a team, and everyone is doing a specialized job," she said. She likened much previous research to the poem The Blind Men and the Elephant, wherein each of six men is right about the portion of the elephant that he is touching but is unable to form a comprehensive understanding of the animal as a whole.

"Everyone has been so caught up in his or her own world that everyone has been right on one component, but has not been able to take in the larger picture," Myers said.


For more information on Rutgers-Newark’s Memory Disorders Project, go to www.memory.rutgers.edu or contact the researchers at gluck@pavlov.rutgers.edu and myers@pavlov.rutgers.edu. Keep up with the latest developments in the field of neurobiological memory research in the free newsletter and Webzine called Memory Loss and the Brain, published by Gluck and Myers (www.memorylossonline.com).

Mike Sutton | EurekAlert!
Further information:
http://www.memory.rutgers.edu
http://www.memorylossonline.com

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

LZH showcases laser material processing of tomorrow at the LASYS 2018

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>