Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rutgers researchers offer new theories about memory


For decades, scientists have disagreed about the way the brain gathers memories, developing two apparently contradictory concepts. But newly published research by a team of scientists at Rutgers-Newark’s Center for Molecular and Behavioral Neuroscience (CMBN) indicates that both models of memory may be partially correct – and that resolving this conflict could lead to new approaches for the treatment of memory disorders such as Alzheimer’s Disease.

The dispute has centered on how the hippocampus – a structure deep inside the brain – processes new information from the senses and stores it. Some researchers – such as Mark Gluck and Catherine Myers, co-directors of the Memory Disorders Project at the CMBN – have been proponents of "incremental memory," viewing the acquisition of memory as a learning process that occurs over time.

"If you see thunder and lightning occur together once, that may be seen as a coincidence," Myers observed. "But the more often you see them happen at the same time, the more likely you are to remember them as related parts of one event."

Other researchers, such as Martijn Meeter, also with the CMBN, have focused on "episodic memory," which is more like memorization. This model argues that "an event only has to occur once and you’ll remember it," Myers said. "If someone tells you a name, you may not remember it for a long time, but you will remember it initially at least." More dramatic events tend to be stored in long-term memory most easily. But Gluck, Myers and Meeter are developing a computer model that suggests the two methods of storing memory work together, and present their novel ideas in a paper published in the June issue of the journal Trends in Cognitive Science. Research using new classes of drugs that affect specific portions of a laboratory rat’s hippocampus and the region around it with greater accuracy has led the Rutgers-Newark team to propose a new interpretation of how the brain organizes all the sensory input that becomes memories.

That input goes through a kind of assembly line as the brain gathers it and directs it to the hippocampus, Myers said. Before reaching the hippocampus itself, the information all passes through a structure adjacent to the hippocampus called the entorhinal cortex for processing. The two parts of the brain lie side by side, resembling two halves of a hotdog bun. The new paper by the Rutgers-Newark investigative team floats the possibility that the entorhinal cortex – part of the "hippocampal region" but not part of the hippocampus itself – handles incremental learning. The main task of the hippocampus may be storing episodic memory.

"Understanding how the entorhinal cortex differs in function from the hippocampus is a hugely important and timely problem in the neurobiology of memory," Gluck said. "The entorhinal cortex is among the very first brain regions that are damaged in the earliest stages of Alzheimer’s Disease, so understanding it is crucial to measuring the effectiveness of novel drugs to fight AD."

Until very recently, write the researchers, only broad generalizations could be made about how memory was processed in the general hippocampal region. When humans suffer brain injuries, note the Rutgers-Newark scientists in their paper, "the damage is seldom limited to a single brain structure." As a result, some memory functions long assumed to take place in the hippocampus alone may occur in surrounding parts of the brain, such as the entorhinal cortex.

A coordinated effort between different portions of the brain, taken as a whole, may contribute to what we think of as memory, Myers observed. "It’s a team, and everyone is doing a specialized job," she said. She likened much previous research to the poem The Blind Men and the Elephant, wherein each of six men is right about the portion of the elephant that he is touching but is unable to form a comprehensive understanding of the animal as a whole.

"Everyone has been so caught up in his or her own world that everyone has been right on one component, but has not been able to take in the larger picture," Myers said.

For more information on Rutgers-Newark’s Memory Disorders Project, go to or contact the researchers at and Keep up with the latest developments in the field of neurobiological memory research in the free newsletter and Webzine called Memory Loss and the Brain, published by Gluck and Myers (

Mike Sutton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>