Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body clocks keep migrating monarchs on course, Science study shows

23.05.2003


Butterfly flight simulator sheds light on epic migration



During their winter migration to Mexico, monarch butterflies depend on an internal clock to help them navigate in relation to the sun, scientists have found.

By studying monarchs inside a specially designed flight simulator, the researchers have gathered what they believe is the first direct evidence of the essential role of the circadian clock in celestial navigation. The study appears in the journal Science, published by the American Association for the Advancement of Science (AAAS).


In the fall, monarch butterflies journey from central and eastern North America to a small region in central Mexico. Only every fourth or fifth generation makes the trip, indicating that the urge to migrate is instinctive, rather than learned.

"Monarchs have a genetic program to undergo this marvelous long term flight in the fall…. They are essentially hell-bent on making it to their over-wintering grounds," said Science author Steven Reppert of the University of Massachusetts Medical School.

While scientists are fairly certain that monarchs use the sun to navigate, they know less about how the butterflies adjust their direction each day, as the sun’s position in the sky changes. It has long been suspected that monarchs use their internal, "circadian" clock as part of their sun compass.

"We have shown the requirement of the circadian clock for monarch butterfly migration," said Reppert. "When the clock is disrupted, monarchs are unable to orient toward Mexico. Without proper navigation, their migration to the south wouldn’t occur, and that generation of butterflies would not survive."

Reppert chose monarchs for the study in part because they don’t learn their route, as honeybees foraging for nectar do, for example.

"Monarch butterfly navigation seems to involve the interaction between a clock and a compass. This makes monarch navigation a bit simpler than navigation in foraging insects where each new route has to be learned," Reppert said.

Understanding how the circadian clock assists the sun compass in the relatively simple navigation by monarchs could provide a model for studying navigation by other animals, Reppert said, citing both foragers such as honeybees and desert ants, as well as long distance migrators such as songbirds.

"We would like to know how the circadian clock functions in four dimensions – not only how the clock functions to keep time, but also how time regulates spatial information," he said. "Increasing knowledge of the genetic makeup of the monarch circadian clock will help tease apart the entire migratory process, a process that remains one of the great mysteries of biology."

Research in other animals has been turning up a number of genes that make up the circadian clock, as their expression oscillates in a daily cycle. The clock is "entrained" to the daily light cycle via specialized by special light-sensitive cells, called photoreceptors.

The researchers found that a common clock gene, known as per, is also part of the monarch circadian clock. Constant light disrupted the cycling of this gene’s expression. It also affected the time of day butterflies emerged from their chrysalises, known to be a marker of circadian time-keeping in other insects.

Reppert and his colleagues then studied the effects of manipulating the daily light and dark cycles on monarchs inside a specially designed flight simulator, with a video camera and computer that record the flight direction.

After being housed under a light/dark cycle in the laboratory that was close to the fall outdoor lighting cycle (light from 7:00 a.m. to 7:00 p.m.) migrant butterflies exposed to outdoor sun oriented to the southwest, toward Mexico. Butterflies housed under an earlier cycle (light from 1:00 a.m. to 1:00 p.m.) flew to the southeast.

When the butterflies were exposed to constant light, they flew directly toward the sun, presumably having lost their sense of time.

Reppert’s team also found that, while UV light is required for sun compass navigation, some other wavelength of light was required for entraining the butterflies’ clocks. This difference may provide a means for untangling the two biological processes.

"The light input pathways are quite distinct, so tracking those pathways in may eventually lead us to the cellular level where this clock-compass interaction is occurring," Reppert said.

Lisa Onaga | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>