Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bucket with two ears catches DNA

16.05.2003


Dutch PhD student Cathelijne Kloks has discovered that the so-called Cold Shock domain of the human YB-1 protein looks like a bucket with two extra ears. These ears lead the DNA to the binding site on the protein and keep it there.



Kloks investigated the structure and function of one of the three domains of the human protein YB-1. This protein plays an important role in the production of new proteins. The central domain, the so-called Cold Shock domain, ensures the binding of the protein to the DNA in the process.

The researcher from the University of Nijmegen discovered that the domain looks like a bucket with a handle and two extra ears. The ears attach to the DNA and push it to the binding site on the YB-1. This binding site was found to be located precisely in between the two ears. This means that the ears can hold the DNA firmly in place whilst it is being bound to the protein. The function of the handle is not yet clear.


Kloks dissolved the YB-1 protein and then studied the solution using NMR measurements. She used the NMR signals to draw up a distances table, which indicated the distance between the nuclei of atoms in the protein. With this information she then calculated the structure of the Cold Shock domain.

Furthermore, Kloks determined the strength of the binding to the DNA. The Cold Shock domain alone formed weak bonds to the DNA. This did not agree with previously made measurements of the binding strength of the complete YB-1 protein. The domain also exhibited little preference with respect to where it binds to the DNA, although previous experiments had shown that the Cold Shock domain binds more strongly to areas of DNA containing a lot of cytosine and thymine. Kloks concluded that the protein’s considerable binding strength and preference could only be clarified by including its other two domains.

In the cell YB-1 forms the link between the transcription of the DNA and the subsequent production of a new protein. YB-1 consists of three different domains. These are compact parts which can fold independently without using other parts of the protein.

The Cold Shock domain derives its name from its function in bacteria. In bacterial proteins the domain ensures that the bacteria resume growth, following a period of arrested growth due to a sudden drop in temperature.

For further information please contact Cathelijne Kloks (Department of Medicinal Chemistry, Organon) tel. +31 (0)412 662461 e-mail: c.kloks@organon.com. The doctoral thesis will be defended on 26 May 2003. Ms Kloks’’ supervisor is Prof. C.W. Hilbers (University of Nijmegen).

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>