Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bucket with two ears catches DNA

16.05.2003


Dutch PhD student Cathelijne Kloks has discovered that the so-called Cold Shock domain of the human YB-1 protein looks like a bucket with two extra ears. These ears lead the DNA to the binding site on the protein and keep it there.



Kloks investigated the structure and function of one of the three domains of the human protein YB-1. This protein plays an important role in the production of new proteins. The central domain, the so-called Cold Shock domain, ensures the binding of the protein to the DNA in the process.

The researcher from the University of Nijmegen discovered that the domain looks like a bucket with a handle and two extra ears. The ears attach to the DNA and push it to the binding site on the YB-1. This binding site was found to be located precisely in between the two ears. This means that the ears can hold the DNA firmly in place whilst it is being bound to the protein. The function of the handle is not yet clear.


Kloks dissolved the YB-1 protein and then studied the solution using NMR measurements. She used the NMR signals to draw up a distances table, which indicated the distance between the nuclei of atoms in the protein. With this information she then calculated the structure of the Cold Shock domain.

Furthermore, Kloks determined the strength of the binding to the DNA. The Cold Shock domain alone formed weak bonds to the DNA. This did not agree with previously made measurements of the binding strength of the complete YB-1 protein. The domain also exhibited little preference with respect to where it binds to the DNA, although previous experiments had shown that the Cold Shock domain binds more strongly to areas of DNA containing a lot of cytosine and thymine. Kloks concluded that the protein’s considerable binding strength and preference could only be clarified by including its other two domains.

In the cell YB-1 forms the link between the transcription of the DNA and the subsequent production of a new protein. YB-1 consists of three different domains. These are compact parts which can fold independently without using other parts of the protein.

The Cold Shock domain derives its name from its function in bacteria. In bacterial proteins the domain ensures that the bacteria resume growth, following a period of arrested growth due to a sudden drop in temperature.

For further information please contact Cathelijne Kloks (Department of Medicinal Chemistry, Organon) tel. +31 (0)412 662461 e-mail: c.kloks@organon.com. The doctoral thesis will be defended on 26 May 2003. Ms Kloks’’ supervisor is Prof. C.W. Hilbers (University of Nijmegen).

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>