Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists trigger new hair growth in mice

15.05.2003


Brief activation of signaling protein stimulates hair follicle growth phase



University of Michigan graduate student David Van Mater knew something strange was going on when he noticed stubble on the shaved skin of experimental mice in his laboratory. Instead of the tumors he had originally expected to see, the mice were growing hair.

Van Mater had stumbled on the discovery that beta-catenin (“bay-tuh-kuh-TEEN-in”), a signaling protein involved in embryonic development and several types of cancer, also triggers changes in adult mouse hair follicles that lead to the growth of new hair.


The discovery by Van Mater and U-M scientists Frank T. Kolligs, M.D., Andrzej A. Dlugosz, M.D., and Eric R., Fearon, M.D., Ph.D., will be published in the May 15 issue of Genes & Development.

“Other researchers have shown that beta-catenin and other genes in the Wnt (“wint”) pathway are important for normal development of hair follicles in embryos and after birth,” says Dlugosz, an associate professor of dermatology in the U-M Comprehensive Cancer Center. “What’s new about our study is the finding that a brief activation of beta-catenin in resting hair follicles could be enough to trigger the complex series of changes it takes to produce a normal hair.”

The original purpose of the research study was to learn how the Wnt signaling pathway and beta-catenin are connected to cancer development, according to Fearon, the Emanual N. Maisel Professor of Oncology in the U-M Cancer Center. “Beta-catenin carries signals from growth factors called Wnts to the cell’s nucleus,” Fearon says. “If beta-catenin expression in the cell isn’t adequately controlled and regulated, it changes normal patterns of gene expression. This can lead to several types of cancer, especially colon cancer.”

The study used genetically altered mice developed in the U-M Transgenic Animal Model Core. By adding a packaged set of genes called a construct to fertilized mouse eggs, U-M researchers created a new strain of transgenic mice with an inducible form of beta-catenin in their skin cells and hair follicles.

Van Mater induced beta-catenin signaling activity by applying a chemical called 4-OHT to shaved areas on the backs of the transgenic mice and matched control mice with normal beta-catenin genes. This chemical turned on the beta-catenin in the skin and follicles of the transgenic mice. The plan was to use 4-OHT to turn on beta-catenin activity in the transgenic mice until skin tumors developed, and then turn off beta-catenin activity to see if the tumors disappeared.

“But we never saw tumors -- just massive hyperplastic growth of hair follicle cells,” Van Mater says. The scientists also noticed other skin changes that suggested an exaggerated growth phase of the hair cycle. Dlugosz suggested applying 4-OHT just once, instead of every day, and to do it during the hair follicles’ resting phase or telogen.

“Hair follicles are like a mini-organ in the body,” explains Van Mater, a graduate student in the U-M Medical School’s Medical Scientist Training Program. “Unlike most organs in the adult body, hair follicles go through regular cycles of growth, regression and rest. They are able to regenerate completely during each growth phase. Previous studies had suggested that a Wnt signal might be the switch that drives resting hair follicles into the active growth phase. By treating the transgenic mice with a single application of 4-OHT, we hoped to mimic the effect of a short pulse of Wnt expression in normal mice.”

So Van Mater started over -- applying 4-OHT just once to the shaved backs of transgenic mice and normal mice during the telogen phase of the hair cycle. Fifteen days later, the transgenic mice needed another shave, but there were no signs of new hair growth on the control mice.

“Our findings suggest some potential strategies for inducing hair growth, but it is premature to think these results will lead to new approaches for treating common male-pattern baldness,” Dlugosz cautioned. “Many hair follicles in bald and balding men are greatly reduced in size, so merely reactivating hair growth would not produce a normal hair. Also, activation of beta-catenin in the body would need to be tightly regulated, since uncontrolled beta-catenin activity can lead to tumors of hair follicle cells or tumors in other sites, such as the colon, liver or ovary.”


The research was funded by the National Cancer Institute of the National Institutes of Health. Co-author Frank T. Kolligs, M.D., a U-M former post-doctoral scholar working in Fearon’s laboratory, is now at the University of Munich.

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>