Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists trigger new hair growth in mice

15.05.2003


Brief activation of signaling protein stimulates hair follicle growth phase



University of Michigan graduate student David Van Mater knew something strange was going on when he noticed stubble on the shaved skin of experimental mice in his laboratory. Instead of the tumors he had originally expected to see, the mice were growing hair.

Van Mater had stumbled on the discovery that beta-catenin (“bay-tuh-kuh-TEEN-in”), a signaling protein involved in embryonic development and several types of cancer, also triggers changes in adult mouse hair follicles that lead to the growth of new hair.


The discovery by Van Mater and U-M scientists Frank T. Kolligs, M.D., Andrzej A. Dlugosz, M.D., and Eric R., Fearon, M.D., Ph.D., will be published in the May 15 issue of Genes & Development.

“Other researchers have shown that beta-catenin and other genes in the Wnt (“wint”) pathway are important for normal development of hair follicles in embryos and after birth,” says Dlugosz, an associate professor of dermatology in the U-M Comprehensive Cancer Center. “What’s new about our study is the finding that a brief activation of beta-catenin in resting hair follicles could be enough to trigger the complex series of changes it takes to produce a normal hair.”

The original purpose of the research study was to learn how the Wnt signaling pathway and beta-catenin are connected to cancer development, according to Fearon, the Emanual N. Maisel Professor of Oncology in the U-M Cancer Center. “Beta-catenin carries signals from growth factors called Wnts to the cell’s nucleus,” Fearon says. “If beta-catenin expression in the cell isn’t adequately controlled and regulated, it changes normal patterns of gene expression. This can lead to several types of cancer, especially colon cancer.”

The study used genetically altered mice developed in the U-M Transgenic Animal Model Core. By adding a packaged set of genes called a construct to fertilized mouse eggs, U-M researchers created a new strain of transgenic mice with an inducible form of beta-catenin in their skin cells and hair follicles.

Van Mater induced beta-catenin signaling activity by applying a chemical called 4-OHT to shaved areas on the backs of the transgenic mice and matched control mice with normal beta-catenin genes. This chemical turned on the beta-catenin in the skin and follicles of the transgenic mice. The plan was to use 4-OHT to turn on beta-catenin activity in the transgenic mice until skin tumors developed, and then turn off beta-catenin activity to see if the tumors disappeared.

“But we never saw tumors -- just massive hyperplastic growth of hair follicle cells,” Van Mater says. The scientists also noticed other skin changes that suggested an exaggerated growth phase of the hair cycle. Dlugosz suggested applying 4-OHT just once, instead of every day, and to do it during the hair follicles’ resting phase or telogen.

“Hair follicles are like a mini-organ in the body,” explains Van Mater, a graduate student in the U-M Medical School’s Medical Scientist Training Program. “Unlike most organs in the adult body, hair follicles go through regular cycles of growth, regression and rest. They are able to regenerate completely during each growth phase. Previous studies had suggested that a Wnt signal might be the switch that drives resting hair follicles into the active growth phase. By treating the transgenic mice with a single application of 4-OHT, we hoped to mimic the effect of a short pulse of Wnt expression in normal mice.”

So Van Mater started over -- applying 4-OHT just once to the shaved backs of transgenic mice and normal mice during the telogen phase of the hair cycle. Fifteen days later, the transgenic mice needed another shave, but there were no signs of new hair growth on the control mice.

“Our findings suggest some potential strategies for inducing hair growth, but it is premature to think these results will lead to new approaches for treating common male-pattern baldness,” Dlugosz cautioned. “Many hair follicles in bald and balding men are greatly reduced in size, so merely reactivating hair growth would not produce a normal hair. Also, activation of beta-catenin in the body would need to be tightly regulated, since uncontrolled beta-catenin activity can lead to tumors of hair follicle cells or tumors in other sites, such as the colon, liver or ovary.”


The research was funded by the National Cancer Institute of the National Institutes of Health. Co-author Frank T. Kolligs, M.D., a U-M former post-doctoral scholar working in Fearon’s laboratory, is now at the University of Munich.

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>