Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists trigger new hair growth in mice

15.05.2003


Brief activation of signaling protein stimulates hair follicle growth phase



University of Michigan graduate student David Van Mater knew something strange was going on when he noticed stubble on the shaved skin of experimental mice in his laboratory. Instead of the tumors he had originally expected to see, the mice were growing hair.

Van Mater had stumbled on the discovery that beta-catenin (“bay-tuh-kuh-TEEN-in”), a signaling protein involved in embryonic development and several types of cancer, also triggers changes in adult mouse hair follicles that lead to the growth of new hair.


The discovery by Van Mater and U-M scientists Frank T. Kolligs, M.D., Andrzej A. Dlugosz, M.D., and Eric R., Fearon, M.D., Ph.D., will be published in the May 15 issue of Genes & Development.

“Other researchers have shown that beta-catenin and other genes in the Wnt (“wint”) pathway are important for normal development of hair follicles in embryos and after birth,” says Dlugosz, an associate professor of dermatology in the U-M Comprehensive Cancer Center. “What’s new about our study is the finding that a brief activation of beta-catenin in resting hair follicles could be enough to trigger the complex series of changes it takes to produce a normal hair.”

The original purpose of the research study was to learn how the Wnt signaling pathway and beta-catenin are connected to cancer development, according to Fearon, the Emanual N. Maisel Professor of Oncology in the U-M Cancer Center. “Beta-catenin carries signals from growth factors called Wnts to the cell’s nucleus,” Fearon says. “If beta-catenin expression in the cell isn’t adequately controlled and regulated, it changes normal patterns of gene expression. This can lead to several types of cancer, especially colon cancer.”

The study used genetically altered mice developed in the U-M Transgenic Animal Model Core. By adding a packaged set of genes called a construct to fertilized mouse eggs, U-M researchers created a new strain of transgenic mice with an inducible form of beta-catenin in their skin cells and hair follicles.

Van Mater induced beta-catenin signaling activity by applying a chemical called 4-OHT to shaved areas on the backs of the transgenic mice and matched control mice with normal beta-catenin genes. This chemical turned on the beta-catenin in the skin and follicles of the transgenic mice. The plan was to use 4-OHT to turn on beta-catenin activity in the transgenic mice until skin tumors developed, and then turn off beta-catenin activity to see if the tumors disappeared.

“But we never saw tumors -- just massive hyperplastic growth of hair follicle cells,” Van Mater says. The scientists also noticed other skin changes that suggested an exaggerated growth phase of the hair cycle. Dlugosz suggested applying 4-OHT just once, instead of every day, and to do it during the hair follicles’ resting phase or telogen.

“Hair follicles are like a mini-organ in the body,” explains Van Mater, a graduate student in the U-M Medical School’s Medical Scientist Training Program. “Unlike most organs in the adult body, hair follicles go through regular cycles of growth, regression and rest. They are able to regenerate completely during each growth phase. Previous studies had suggested that a Wnt signal might be the switch that drives resting hair follicles into the active growth phase. By treating the transgenic mice with a single application of 4-OHT, we hoped to mimic the effect of a short pulse of Wnt expression in normal mice.”

So Van Mater started over -- applying 4-OHT just once to the shaved backs of transgenic mice and normal mice during the telogen phase of the hair cycle. Fifteen days later, the transgenic mice needed another shave, but there were no signs of new hair growth on the control mice.

“Our findings suggest some potential strategies for inducing hair growth, but it is premature to think these results will lead to new approaches for treating common male-pattern baldness,” Dlugosz cautioned. “Many hair follicles in bald and balding men are greatly reduced in size, so merely reactivating hair growth would not produce a normal hair. Also, activation of beta-catenin in the body would need to be tightly regulated, since uncontrolled beta-catenin activity can lead to tumors of hair follicle cells or tumors in other sites, such as the colon, liver or ovary.”


The research was funded by the National Cancer Institute of the National Institutes of Health. Co-author Frank T. Kolligs, M.D., a U-M former post-doctoral scholar working in Fearon’s laboratory, is now at the University of Munich.

Nicole Fawcett | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>