Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of thyroxine transporter molecule shows how key hormone hitches a lift round body

14.05.2003


Findings may aid the development of drugs to treat thyroid disorders



Structural analysis has revealed for the first time how a key messenger in the body’s chemical communication system hooks up with one of the proteins that delivers it to sites of action in the body.

Using X-ray crystallography, scientists from Imperial College London and the University of Hawaii have identified the location of four binding sites on human serum albumin (HSA), the principal protein in blood plasma, to which the chemical messenger thyroxine attaches.


Thyroxine is the primary hormone released from the thyroid gland, and acts on nearly every cell in the body affecting important mechanisms that control, weight, energy level, memory and heart rate.

While HSA is not the major transporter of thyroxine, its quick and direct action provides the most ready supply of the hormone for use around the body.

The findings, which are published online this week in the Proceedings of the National Academy of Science, help to explain how thyroxine regulates metabolic processes and normal physical development, and may aid the development of drugs to treat thyroid disorders.

The structural information also sheds light on the molecular basis of a rare condition, familial dysalbuminemic hyperthyroxemia (FDH), which is caused by mutations in HSA. This harmless genetic disorder is often misdiagnosed as an overactive thyroid gland and treated inappropriately.

Dr Stephen Curry of Imperial’s Department of Biological Sciences and senior author of the study said:

“Our study provides a more complete understanding of how thyroxine binds to HSA. Previously the number and location of binding sites on HSA was not clear. This structural information can now be used to help design synthetic forms of thyroxine to treat thyroid disorders. It will allow more detailed analysis of how the two molecules interact in the body, which can be used to make more effective candidate drugs.”

HSA is the most abundant protein in the circulatory system. Its principal function is to transport fatty acids, but it is also one of three proteins that delivers thyroxine.

Levels of thyroxine circulating in the body are used as a biochemical indicator to help gauge how active the thyroid gland is. The researchers sought a better understanding of how the hormone binds to the proteins that transport it in order to improve diagnosis of the various thyroid disorders.

Together with colleagues in Hawaii, the Imperial team, who are the main academic research group in the world working on albumin structures, examined the crystallised structure of HSA bound to thyroxine under three different conditions: in the presence or absence of fatty acids and using mutant forms of HSA.

“The shape of the HSA-thyroxine complex alters dramatically when fatty acids bind to the protein,” explained Dr Curry. “The main difference is that when fatty acids are present, their binding creates a new binding site.

“This is an unprecedented example of the complex interplay between the binding of fatty acids and thyroxine to the protein. Although fatty acids and thyroxine compete with one another to bind to several sites on the protein, there is also an element of cooperation through the creation of an additional binding site for the hormone.

“The interaction between the FDH causing mutant forms of HSA and thyroxine increases the binding affinity between the two molecules 10 to 15 fold. People with this condition present with normal levels of thyroxine that is not bound to transporter proteins but when the total level of thyroxine is looked at it’s much higher. Our research will allow a more accurate diagnosis of this condition in the future.”

The research was supported by the American Heart Foundation, Hawaii Affiliate and the Biotechnology and Biological Sciences Research Council (UK).

Judith H Moore | alfa
Further information:
http://www.ic.ac.uk

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>