Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusually long and aligned ’buckytubes’ grown at Duke

23.04.2003


Duke University chemists have developed a method of growing one-atom-thick cylinders of carbon, called "nanotubes," 100 times longer than usual, while maintaining a soda-straw straightness with controllable orientation. Their achievement solves a major barrier to the nanotubes’ use in ultra-small "nanoelectronic" devices, said the team’s leader.



The researchers have also grown checkerboard-like grids of the tubes which could form the basis of nanoscale electronic devices.

The accomplishment involved sprouting the infinitesimally thin structures, also called "single walled carbon nanotubes," or "buckytubes," from tiny catalytic clusters of iron and molybdenum atoms dotted onto a small rectangle of silicon inside a quartz tube.


These growing nanotubes continue to lengthen along the silicon’s surface in the direction of the flow of a feeding gas of carbon monoxide and hydrogen that had been quick-heated to a temperature hot enough to melt normal glass. Atoms from the feeding gas are used as molecular building blocks.

The process was described by Duke assistant chemistry professor Jie Liu, his senior research associate Shaoming Huang and his graduate student Xinyu Cai in an article posted Tuesday, April 22, 2003 in the on-line edition of the Journal of the American Chemical Society (JACS). Their research was funded by NASA, the Army Research Office and Dupont.

"To the best of my knowledge these are the longest individual single-walled carbon nanotubes ever recorded, although we removed that ’longest’ statement from our paper because you can never claim longest forever," Liu said.

"In our paper, we claimed lengths of more than 2 millimeters, but in our own lab we are now growing 4 millimeter long nanotubes," he added in an interview. "We may get even longer nanotubes later on."

Nanotube lengths are normally less than 20 millionths of a meter, their JACS report said -- about 100 times shorter than the ones Liu’s team is making. If its girth could somehow be bloated to a 1-inch diameter, then a 2-millimeter-long nanotube’s length would extend proportionally to more than 31 miles, Liu estimated.

After learning they could grow the very long and straight nanotubes, the researchers then discovered they could form cross-connecting nanotube grids as well. They formed the grids by growing additional nanotubes in perpendicular directions under the guidance of a reoriented feeding gas flow.

Such grid patterning could form the basis for billionths-of-a-meter scale electronic circuitry, Liu said. Exceptionally lengthy nanotubes could also be cut up into smaller lengths for splicing into electronic nanoarrays, he added.

Moreover, "such long nanotubes make the evaporation of multiple metal electrodes on a single nanotube a relatively easy task," the authors wrote in JACS. "Thus, multiple devices can be created on the same nanotube along its length."

Nanotubes, so named because their smallest dimensions measure just billionths of a meter, were first studied in the 1990s. They are sometimes called buckytubes because their ends, when closed, take the form of soccer ball-shaped carbon molecules known as buckminsterfullerenes, or "buckyballs." Scientists are avidly studying nanotubes because of the cylindrical molecules’ exceptional lightness and strength as well as their intriguing electronic properties, Liu said.

Depending on their specific architectures, nanotubes of sufficient purity can behave either like semiconductors or like metals and could thus form the circuitry for molecular-scale nanoelectrical components of the future, Liu said.

Since coming to Duke from the Rice University laboratory of Nobel Laureate Richard Smalley, a leading researcher in the field, Liu has made a number of advances toward the goal of mass-producing electronically reliable nanotubes.

Last year, his group reported on the advantages of sprouting the nanotubes from catalytic iron and molybdenum seeds, and using a mixture of gaseous carbon monoxide and hydrogen to supply building materials for their growth.

This combination of advances allowed the Duke chemists to grow groups of nanotubes with diameters that were close to uniform. It also let them sprout tubes at locations of their choice on a surface.

But locational control still wasn’t pinpoint, said Liu. The scientists also needed to learn how to steer the direction of tube growth. An illustration in the JACS article shows such "normally"-prepared nanotubes bending in all directions like straw in a walked-on field.

Liu said that "For future electronics applications there are two major barriers in nanotube related research," he added. "One of them is control of location and orientation." The other major obstacle, he said, is tailoring nanotubes to behave consistently as pure metals or pure semiconductors.

Duke’s team has now achieved directional and orientational control by heating samples much more quickly and maintaining a growth temperature of 900 degrees centigrade, it announced in the JACS paper.

"Clearly, the fast-heating is favored for the growth of long and well-aligned nanotubes," the authors wrote. "We believe that the extremely quick growth at the initial stage is the key factor," they added.

Another illustration in that article shows long-straight nanotubes in some cases completely crossing the field of the scanning electron-microscope used to view them. Because the tubes themselves were too thin to be easily seen, the scientists traced in white parallel lines the same length as visual aids.

In their article, the authors also acknowledged that other research groups reported controlling nanotube orientation and location on a flat surface by using an electric field. "However, the introduction of a strong electrical field during the growth of nanotubes is not an easy task," they wrote.

"Furthermore, orienting (nanotube) arrays into multidimensional crossed-network structures in a controllable manner by direct growth was not demonstrated."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>