Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusually long and aligned ’buckytubes’ grown at Duke

23.04.2003


Duke University chemists have developed a method of growing one-atom-thick cylinders of carbon, called "nanotubes," 100 times longer than usual, while maintaining a soda-straw straightness with controllable orientation. Their achievement solves a major barrier to the nanotubes’ use in ultra-small "nanoelectronic" devices, said the team’s leader.



The researchers have also grown checkerboard-like grids of the tubes which could form the basis of nanoscale electronic devices.

The accomplishment involved sprouting the infinitesimally thin structures, also called "single walled carbon nanotubes," or "buckytubes," from tiny catalytic clusters of iron and molybdenum atoms dotted onto a small rectangle of silicon inside a quartz tube.


These growing nanotubes continue to lengthen along the silicon’s surface in the direction of the flow of a feeding gas of carbon monoxide and hydrogen that had been quick-heated to a temperature hot enough to melt normal glass. Atoms from the feeding gas are used as molecular building blocks.

The process was described by Duke assistant chemistry professor Jie Liu, his senior research associate Shaoming Huang and his graduate student Xinyu Cai in an article posted Tuesday, April 22, 2003 in the on-line edition of the Journal of the American Chemical Society (JACS). Their research was funded by NASA, the Army Research Office and Dupont.

"To the best of my knowledge these are the longest individual single-walled carbon nanotubes ever recorded, although we removed that ’longest’ statement from our paper because you can never claim longest forever," Liu said.

"In our paper, we claimed lengths of more than 2 millimeters, but in our own lab we are now growing 4 millimeter long nanotubes," he added in an interview. "We may get even longer nanotubes later on."

Nanotube lengths are normally less than 20 millionths of a meter, their JACS report said -- about 100 times shorter than the ones Liu’s team is making. If its girth could somehow be bloated to a 1-inch diameter, then a 2-millimeter-long nanotube’s length would extend proportionally to more than 31 miles, Liu estimated.

After learning they could grow the very long and straight nanotubes, the researchers then discovered they could form cross-connecting nanotube grids as well. They formed the grids by growing additional nanotubes in perpendicular directions under the guidance of a reoriented feeding gas flow.

Such grid patterning could form the basis for billionths-of-a-meter scale electronic circuitry, Liu said. Exceptionally lengthy nanotubes could also be cut up into smaller lengths for splicing into electronic nanoarrays, he added.

Moreover, "such long nanotubes make the evaporation of multiple metal electrodes on a single nanotube a relatively easy task," the authors wrote in JACS. "Thus, multiple devices can be created on the same nanotube along its length."

Nanotubes, so named because their smallest dimensions measure just billionths of a meter, were first studied in the 1990s. They are sometimes called buckytubes because their ends, when closed, take the form of soccer ball-shaped carbon molecules known as buckminsterfullerenes, or "buckyballs." Scientists are avidly studying nanotubes because of the cylindrical molecules’ exceptional lightness and strength as well as their intriguing electronic properties, Liu said.

Depending on their specific architectures, nanotubes of sufficient purity can behave either like semiconductors or like metals and could thus form the circuitry for molecular-scale nanoelectrical components of the future, Liu said.

Since coming to Duke from the Rice University laboratory of Nobel Laureate Richard Smalley, a leading researcher in the field, Liu has made a number of advances toward the goal of mass-producing electronically reliable nanotubes.

Last year, his group reported on the advantages of sprouting the nanotubes from catalytic iron and molybdenum seeds, and using a mixture of gaseous carbon monoxide and hydrogen to supply building materials for their growth.

This combination of advances allowed the Duke chemists to grow groups of nanotubes with diameters that were close to uniform. It also let them sprout tubes at locations of their choice on a surface.

But locational control still wasn’t pinpoint, said Liu. The scientists also needed to learn how to steer the direction of tube growth. An illustration in the JACS article shows such "normally"-prepared nanotubes bending in all directions like straw in a walked-on field.

Liu said that "For future electronics applications there are two major barriers in nanotube related research," he added. "One of them is control of location and orientation." The other major obstacle, he said, is tailoring nanotubes to behave consistently as pure metals or pure semiconductors.

Duke’s team has now achieved directional and orientational control by heating samples much more quickly and maintaining a growth temperature of 900 degrees centigrade, it announced in the JACS paper.

"Clearly, the fast-heating is favored for the growth of long and well-aligned nanotubes," the authors wrote. "We believe that the extremely quick growth at the initial stage is the key factor," they added.

Another illustration in that article shows long-straight nanotubes in some cases completely crossing the field of the scanning electron-microscope used to view them. Because the tubes themselves were too thin to be easily seen, the scientists traced in white parallel lines the same length as visual aids.

In their article, the authors also acknowledged that other research groups reported controlling nanotube orientation and location on a flat surface by using an electric field. "However, the introduction of a strong electrical field during the growth of nanotubes is not an easy task," they wrote.

"Furthermore, orienting (nanotube) arrays into multidimensional crossed-network structures in a controllable manner by direct growth was not demonstrated."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>