Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine Fundamental Mechanisms Involved in Immune Response

10.04.2003


Scientists from the Howard Hughes Medical Institute and their colleagues have unraveled some of the fundamental mysteries about the genetic mechanisms that endow the immune system with its life-saving ability to generate specialized antibodies.

Without genetic fine-tuning, antibodies would be relatively ineffective in finding a good match on the surface of viruses, parasites, and other potentially dangerous foreign pathogens. The findings also reveal the workings of a gene mutation process that can go awry, leading to the development of certain forms of cancer or allergic reactions.

HHMI investigator Frederick W. Alt at Children’s Hospital in Boston and Harvard Medical School directed the studies. His team’s findings explain the genetic line dance by which an otherwise generic immunoglobulin, or antibody, molecule acquires the genetic components that encode for the structural characteristics it needs to activate appropriate pathways to eliminate specific types of invaders, or antigens. The appropriate class of immunoglobulin can then mark invading cells for elimination by other cells of the immune system.



The researchers’ findings are published in two articles in the online editions of Nature Immunology and Nature on April 7 and April 9, 2003, respectively. Alt’s research team members include three current or former HHMI research associates, Jayanta Chaudhuri, Reiko Shinkura and Ming Tian.

The studies focus on how B cell lymphocytes, one of the major cell classes that is deployed in an immune response, assemble the genes that encode for the specific classes of Immunoglobulin on their surface. Unlike other genes, which retain their integrity through each cell division, multiple segments of immunoglobulin genes from disparate parts of the chromosome mix together numerous times to provide a diverse repertoire of functional antibodies. Subsequently, a second form gene shuffling creates various specialized classes of antibodies.

One part of the chromosomal gene segments encoding for immunoglobulin can vary enormously and provide specific recognition of foreign entities while the other remains relatively constant but can be changed in a few specific ways to provide specialization of the antibody. Alt’s papers address two hotly disputed controversies about the process of immunoglobulin specialization. The first controversy involves how the enzyme, activation-induced cytidine deaminase (AID), which is synthesized by the B cell, acts on a specialized region of immunoglobulin DNA, known as the constant region, to initiate the process of antibody specialization. The second is why the enzyme acts only on those particular DNA sequences and not on any others elsewhere in the genome.

For the Nature Immunology paper, Alt and colleagues studied mice to delineate specific gene structures and the alterations necessary for the regional gene swapping to occur. The Nature paper showed the results of the Alt team’s study of the effects of purified AID on test genetic (DNA) sequences.

In order for the specialized antibody properties to arise in immunoglobulins, the genes that encode for it must undergo a refining process known as class switch recombination (CSR). CSR is a highly specific blending of genes in which one part of the immunoglobulin DNA is swapped out for a more specialized class. Alt’s laboratory had previously shown that to activate immunoglobulin differentiation via CSR, a genetic transcription process is necessary within a highly localized region. However, little was known about the actual machinery of CSR or what role AID played in initiating the process.

Working with mice with targeted gene mutations, Alt’s group focused on the sequence of the DNA involved in CSR. When a B cell is activated by an antigen, specific double stranded segments of DNA in the immunoglobulin split off and loop out in a very controlled pattern known as an R-loop. One part of the strand is transcribed into RNA while another single strand of DNA is not transcribed. Alt’s team showed that transcription leading to the R-loop or other higher order DNA structures containing single-strand regions of DNA is important to generate the primary substrate needed for CSR to take place.

Alt’s team then showed, using AID protein, that AID actually modifies DNA and also has a strong preference for acting on the single-stranded segment of DNA. They also showed that AID cannot act on double-stranded segments unless they are transcribed. The AID catalyzed reactions on the single-stranded DNA to mutate it into a specialized form that can then be processed by normal cellular components to complete the CSR process.

The study demonstrates why the gene recombination occurs within such a tightly limited gene segment. It also proves that AID can function to target a specific DNA region to initiate the CSR process resulting in the immunoglobulin molecule’s antibody class specialization.

While this explains one of the fundamental mechanisms underlying the immune response, it also generates new avenues for understanding the genetic dislocations that can potentially initiate some forms of cancer. “The AID enzyme can be extremely dangerous,” says Alt. “It could potentially mutate or recombine any gene.” Were it to do so, it could contribute to genomic instability leading to cancer. Instability in the Immunoglobulin switch region is known to be involved in some forms of lymphoma. Alt’s laboratory is studying AID in laboratory mice to see how, when it goes awry, it could initiate a gene shuffling leading to cancer.

Understanding the immune response mechanism could also lead to new insights into allergic reactions. Allergies result from overproduction of immunoglobulin E, which causes an excessive response by the immune system to relatively benign antigens. Regulating CSR could potentially result in novel ways to treat allergies.

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/news/alt4.html

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>