Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two genes -- Dax 1 and Sry -- required for testis formation

09.04.2003


The sex of newborns is dictated by the X and Y chromosomes – girls are XX whereas boys are XY. However, new research from Northwestern University has shown that normal testis formation depends on two genes -- the so-called male-determining SRY gene, found on the Y chromosome 10 years ago, and a gene called Dax1 on the X (female) chromosome.
Based on the findings of the Northwestern study, published in the May online Nature Genetics, it now appears that Dax1 is required at several points in embryonic testis development (http://dx.doi.org/10.108/Ng1141).

Until this study, Sry was the only known sex-determining gene. Dax1 had been widely accepted as an “anti-testis” or ovary-determining gene because patients with a duplication or “double dose” of Dax1 had features of XY sex reversal, a condition in which individuals have the chromosomes of males but the physical attributes of females.


Despite these findings, laboratory studies showed that deletion of the Dax1 gene in mice did not prevent ovarian development but instead revealed an important role in testis development.

Because most XY females do not have Sry mutations, Joshua J. Meeks, Jeffrey Weiss, and J. Larry Jameson, M.D., of the Feinberg School of Medicine at Northwestern University, hypothesized that other genes are necessary for testis determination.

Meeks, who is first author on the article, is an M.D./Ph.D. student at the Feinberg School. Weiss is research associate professor of medicine, and Jameson is Irving S. Cutter Professor and chair of medicine.

Their article described studies in XY sex-reversed mice lacking the Dax1 gene. Embryonic gonads were examined during the period when the bipotential gonad becomes a testis or an ovary.

Meeks and colleagues showed that the gonads of all of the Dax1-deleted XY sex-reversed mice had no testis cords -- a central feature of sex determination in males -- but had ovaries and external female genitalia and were anovulatory (sterile). Expression of the Sry gene was similar in Dax1-deleted mice and in those in which Dax1 was normal, indicating that sex reversal is not caused by reduced Sry levels in Dax1-deleted mice.

Further, Meeks said, “Sex reversal in the absence of Dax1 occurs subsequent to normal Sry expression, suggesting that Sry and Dax1 are both required for normal testis determination.” Meeks and colleagues at the Feinberg School have been studying the genetic mutations that cause sex reversal in an effort to reveal much-needed information about how these genes regulate gonad development and to better understand the causes of gonadal dysgenesis and infertility in humans.


This study was supported by a grant from the National Institutes of Health.


Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/
http://dx.doi.org/10.108/Ng1141

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>