Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two genes -- Dax 1 and Sry -- required for testis formation

09.04.2003


The sex of newborns is dictated by the X and Y chromosomes – girls are XX whereas boys are XY. However, new research from Northwestern University has shown that normal testis formation depends on two genes -- the so-called male-determining SRY gene, found on the Y chromosome 10 years ago, and a gene called Dax1 on the X (female) chromosome.
Based on the findings of the Northwestern study, published in the May online Nature Genetics, it now appears that Dax1 is required at several points in embryonic testis development (http://dx.doi.org/10.108/Ng1141).

Until this study, Sry was the only known sex-determining gene. Dax1 had been widely accepted as an “anti-testis” or ovary-determining gene because patients with a duplication or “double dose” of Dax1 had features of XY sex reversal, a condition in which individuals have the chromosomes of males but the physical attributes of females.


Despite these findings, laboratory studies showed that deletion of the Dax1 gene in mice did not prevent ovarian development but instead revealed an important role in testis development.

Because most XY females do not have Sry mutations, Joshua J. Meeks, Jeffrey Weiss, and J. Larry Jameson, M.D., of the Feinberg School of Medicine at Northwestern University, hypothesized that other genes are necessary for testis determination.

Meeks, who is first author on the article, is an M.D./Ph.D. student at the Feinberg School. Weiss is research associate professor of medicine, and Jameson is Irving S. Cutter Professor and chair of medicine.

Their article described studies in XY sex-reversed mice lacking the Dax1 gene. Embryonic gonads were examined during the period when the bipotential gonad becomes a testis or an ovary.

Meeks and colleagues showed that the gonads of all of the Dax1-deleted XY sex-reversed mice had no testis cords -- a central feature of sex determination in males -- but had ovaries and external female genitalia and were anovulatory (sterile). Expression of the Sry gene was similar in Dax1-deleted mice and in those in which Dax1 was normal, indicating that sex reversal is not caused by reduced Sry levels in Dax1-deleted mice.

Further, Meeks said, “Sex reversal in the absence of Dax1 occurs subsequent to normal Sry expression, suggesting that Sry and Dax1 are both required for normal testis determination.” Meeks and colleagues at the Feinberg School have been studying the genetic mutations that cause sex reversal in an effort to reveal much-needed information about how these genes regulate gonad development and to better understand the causes of gonadal dysgenesis and infertility in humans.


This study was supported by a grant from the National Institutes of Health.


Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/
http://dx.doi.org/10.108/Ng1141

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>