Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two brain systems tell us to breathe

31.03.2003


Until now, scientists believed that a single area in the brain generated breathing rhythm, enabling breathing to speed up or slow down to adapt to the body’s activity and position. But UCLA neurobiologists have discovered that two systems in the brain interact to generate breathing rhythm — a finding that may translate into better treatment for sleep apnea and sudden infant death syndrome. The journal Neuron reported the findings in its March 6 issue.



“We originally thought that only one brain center was responsible for generating breathing rhythm,” said Dr. Nicholas Mellen, UCLA assistant researcher in neurobiology and principal investigator of the study. “But our research indicates that two cellular networks closely collaborate to control breathing. This brings us an important step closer to understanding how breathing control is organized in the brain.”

“Breathing is a good model for understanding brain function in general,” said Dr. Jack Feldman, UCLA professor of neurobiology and senior author. “Once we learn how the brain commands humans to breathe, we will gain valuable insight into how the brain produces other meaningful behaviors.”


The UCLA finding could enhance prevention, diagnosis and treatment for sleep apnea and sudden infant death syndrome, as well as speed the development of drugs for neurological disorders that can interfere with breathing, such as stroke, multiple sclerosis and Parkinson’s disease, he added.

Previously, UCLA neurobiologists located a brain region they identified as the key command post for generating breathing and dubbed it the preBotzinger Complex. When they exposed the preBötzinger Complex nerve cells in a rat’s brain to a narcotic, the animal’s breathing slowed dramatically. This led the UCLA team to conclude that the preBotzinger Complex served as the brain’s headquarters for breathing rhythm.

“Overdoses of narcotics kill people because they slow your breathing until it stops entirely,” Feldman said. “The cells in the preBotzinger Complex replicated this phenomenon.”

Release URL, if available: The URL must point to the specific release, not a general page of releases or your organization’s main homepage.Researchers Hiroshi Onimaru and Ikuo Homma of Showa University in Tokyo, however, had described a second set of brain cells that did not respond to narcotics. They called them “pre?I” cells, for pre-inspiratory, because they are active before inhalation. The UCLA researchers decided to test the effect of a low amount of narcotics on a rat’s breathing. They first tested the drug on a slice of brainstem that did not contain pre-I neurons and then exposed the drug to a block of brainstem that did contain pre-I neurons.

When the pre-I neurons were present, the animal’s breathing slowed continuously. When the cells were absent, however, Mellen and Feldman witnessed a surprising event. Instead of slowing down gradually, the rat’s breathing pattern slowed by skipping entire breaths. This suggested that two distinct systems in the brain interact to generate breathing rhythm.

“Exposing the pre-I cells to narcotics still reduced the rat’s intake of oxygen, but it did so by skipping beats rather than slowing the rhythm,” Mellen said.

In addition to responding to narcotics differently, the two cellular networks varied in other ways, too. The UCLA team discovered that sensory feedback from the lungs affected the preBotzinger Complex brain cells, but not the pre-I cells. The scientists hypothesize that this is the brain’s way of striking a balance between stability and sensitivity.

“Humans breathe no matter what. Yet breathing is an instinctual process,” Feldman said. “We do it 24/7 from the second we’re born. The process must adapt and be sensitive to all sensory input, yet be extraordinarily stable and reliable.”

For example, the act of sitting requires 250 millileters of oxygen per minute to support resting human metabolism. The minute a person stands up and begins to walk, breathing must immediately accelerate to take in 1,000 millileters of oxygen per minute to support the activity.

“Our findings suggest that the pre-I cell system controls stability, while the preBotzinger network responds to sensory feedback,” Mellen said. “This division of labor allows breathing to quickly adapt to sensory and other input, yet rapidly return to its normal rhythm.”

“Humans and other mammals are the only vertebrate species to possess a diaphragm. This muscle played a key role in our ascending the evolutionary ladder by letting us take in more oxygen to feed our bigger brains,” Feldman said. “We think that the preBotzinger Complex also may have evolved to control the diaphragm.”

The UCLA data suggests that the preBotzinger Complex is dominant under normal circumstances, but the pre-I cell network also can give rise to the breathing rhythm. Because the two cell networks function in such an integrated manner, scientists cannot readily tease their roles apart. Only the systems’ different sensitivity to narcotics revealed their interaction.

The UCLA team will next try to unravel how the two cellular networks communicate in the brain to produce breathing.


###
The National Institute of Heart, Lung and Blood funded the research. UCLA researchers Wiktor Janczewski and Christopher Bocchiaro were co-authors on the study.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>