Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein engineering produces ’molecular switch’


In this Johns Hopkins engineering lab, Gurkan Guntas and Marc Ostermeier used a technique called domain insertion to join two proteins and create a molecular ’switch.’
Photo by Will Kirk

Technique could lead to new drug delivery systems, biological warfare sensors

Using a lab technique called domain insertion, Johns Hopkins researchers have joined two proteins in a way that creates a molecular “switch.” The result, the researchers say, is a microscopic protein partnership in which one member controls the activity of the other. Similarly coupled proteins may someday be used to produce specialized molecules that deliver lethal drugs only to cancerous cells. They also might be used to set off a warning signal when biological warfare agents are present.

The technique used to produce this molecular switch was reported March 27 in New Orleans at the 225th national meeting of the American Chemical Society,

“We’ve taken two proteins that normally have nothing to do with one another, spliced them together genetically and created a fusion protein in which the two components now ‘talk’ to one another,” said Marc Ostermeier, assistant professor in the Department of Chemical and Biomolecular Engineering at Johns Hopkins. “More important, we’ve shown that one of these partners is able to modulate or control the activity of the other. This could lead to very exciting practical applications in medical treatment and bio-sensing.”

To prove the production of a molecular switch is possible, Ostermeier, assisted by doctoral student Gurkan Guntas, started with two proteins that typically do not interact: beta-lactamase and the maltose binding protein found in a harmless form of E. coli bacteria. Each protein has a distinct activity that makes it easy to monitor. Beta-lactamase is an enzyme that can disable and degrade penicillin-like antibiotics. Maltose binding protein binds to a type of sugar called maltose that the E. coli cells can use as food.

Using a technique called domain insertion, the Johns Hopkins researchers placed beta-lactamase genes inside genes for maltose binding protein. To do this, they snipped the maltose binding genes, using enzymes that act like molecular scissors to cut the genes as though they were tiny strips of paper. A second enzyme was used to re-attach these severed strips to each side of a beta-lactamase gene, producing a single gene strip measuring approximately the combined length of the original pieces. This random cut-and-paste process took place within a test tube and created hundreds of thousands of combined genes. Because the pieces were cut and reassembled at different locations along the maltose binding gene, the combined genes produced new proteins with different characteristics.

Ostermeier believed a very small number of these new fusion proteins might possess the molecular switch behavior he was looking for. To find them, he and Guntas took a cue from the process of evolution, or “survival of the fittest.” By looking for the E. coli that thrived in maltose, they could isolate only the ones in which the maltose binding partner was still active (in other words, it still bound itself to maltose). By then mixing them with an antibiotic, the researchers could find the ones in which the beta-lactamase remained active and capable of reacting against the antibiotic. Through such survival tests, the researchers ultimately were able to find two fusion proteins in which not only were both proteins still active, but in which the presence of maltose actually caused the beta-lactamase partner to step up its attack on an antibiotic.

“In other words,” Ostermeier said, “one part of this coupled protein sent a signal, telling the other part to change its behavior. This is the first clear demonstration that you can apply the domain insertion technique to control the activity of an enzyme. If we can replicate this with other proteins, we can create biological agents that don’t exist in nature but can be very useful in important applications.”

For example, Ostermeier said, one part of a fusion protein might react only to cancer cells, signaling its partner to release a toxin to kill the diseased tissue. Healthy cells, however, would not set off the switch and would thus be left unharmed. Ostermeier also suggested that one part of a fusion protein might react to the presence of a biological warfare agent, signaling its partner to set off a bright green flourescent glow that could alert soldiers and others to the danger.

The Johns Hopkins University has applied for U.S. and international patents related to Ostermeier’s molecular switch technology and the techniques used to produce them. Ostermeier’s research has been funded by grants from the American Cancer Society and the Maryland Cigarette Restitution Fund.

Phil Sneiderman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>