Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein engineering produces ’molecular switch’

28.03.2003


In this Johns Hopkins engineering lab, Gurkan Guntas and Marc Ostermeier used a technique called domain insertion to join two proteins and create a molecular ’switch.’
Photo by Will Kirk


Technique could lead to new drug delivery systems, biological warfare sensors

Using a lab technique called domain insertion, Johns Hopkins researchers have joined two proteins in a way that creates a molecular “switch.” The result, the researchers say, is a microscopic protein partnership in which one member controls the activity of the other. Similarly coupled proteins may someday be used to produce specialized molecules that deliver lethal drugs only to cancerous cells. They also might be used to set off a warning signal when biological warfare agents are present.

The technique used to produce this molecular switch was reported March 27 in New Orleans at the 225th national meeting of the American Chemical Society,



“We’ve taken two proteins that normally have nothing to do with one another, spliced them together genetically and created a fusion protein in which the two components now ‘talk’ to one another,” said Marc Ostermeier, assistant professor in the Department of Chemical and Biomolecular Engineering at Johns Hopkins. “More important, we’ve shown that one of these partners is able to modulate or control the activity of the other. This could lead to very exciting practical applications in medical treatment and bio-sensing.”

To prove the production of a molecular switch is possible, Ostermeier, assisted by doctoral student Gurkan Guntas, started with two proteins that typically do not interact: beta-lactamase and the maltose binding protein found in a harmless form of E. coli bacteria. Each protein has a distinct activity that makes it easy to monitor. Beta-lactamase is an enzyme that can disable and degrade penicillin-like antibiotics. Maltose binding protein binds to a type of sugar called maltose that the E. coli cells can use as food.

Using a technique called domain insertion, the Johns Hopkins researchers placed beta-lactamase genes inside genes for maltose binding protein. To do this, they snipped the maltose binding genes, using enzymes that act like molecular scissors to cut the genes as though they were tiny strips of paper. A second enzyme was used to re-attach these severed strips to each side of a beta-lactamase gene, producing a single gene strip measuring approximately the combined length of the original pieces. This random cut-and-paste process took place within a test tube and created hundreds of thousands of combined genes. Because the pieces were cut and reassembled at different locations along the maltose binding gene, the combined genes produced new proteins with different characteristics.

Ostermeier believed a very small number of these new fusion proteins might possess the molecular switch behavior he was looking for. To find them, he and Guntas took a cue from the process of evolution, or “survival of the fittest.” By looking for the E. coli that thrived in maltose, they could isolate only the ones in which the maltose binding partner was still active (in other words, it still bound itself to maltose). By then mixing them with an antibiotic, the researchers could find the ones in which the beta-lactamase remained active and capable of reacting against the antibiotic. Through such survival tests, the researchers ultimately were able to find two fusion proteins in which not only were both proteins still active, but in which the presence of maltose actually caused the beta-lactamase partner to step up its attack on an antibiotic.

“In other words,” Ostermeier said, “one part of this coupled protein sent a signal, telling the other part to change its behavior. This is the first clear demonstration that you can apply the domain insertion technique to control the activity of an enzyme. If we can replicate this with other proteins, we can create biological agents that don’t exist in nature but can be very useful in important applications.”

For example, Ostermeier said, one part of a fusion protein might react only to cancer cells, signaling its partner to release a toxin to kill the diseased tissue. Healthy cells, however, would not set off the switch and would thus be left unharmed. Ostermeier also suggested that one part of a fusion protein might react to the presence of a biological warfare agent, signaling its partner to set off a bright green flourescent glow that could alert soldiers and others to the danger.

The Johns Hopkins University has applied for U.S. and international patents related to Ostermeier’s molecular switch technology and the techniques used to produce them. Ostermeier’s research has been funded by grants from the American Cancer Society and the Maryland Cigarette Restitution Fund.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.jhu.edu/news_info/news/home03/mar03/molecule.html
http://www.jhu.edu/chbe/index.asp

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>