Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover gene that contributes to sense of balance

25.03.2003


Researchers have discovered a gene that appears to be critical for maintaining a healthy sense of balance in mice. The study, led by a team at Washington University School of Medicine in St. Louis, appears in the April 1 issue of the journal Human Molecular Genetics and online March 24.



"Loss of balance is a significant problem in the elderly because it can lead to dangerous falls and injuries," says one of the study’s principal investigators, David M. Ornitz, M.D., Ph.D., professor of molecular biology and pharmacology at the School of Medicine. "Loss of balance also is a problem for astronauts following exposure to zero gravity. Now that we’ve discovered this new gene, we can begin to understand the mechanisms that allow the body to sense gravity and maintain balance."

Balance is determined and regulated by the vestibular system, which is housed in the inner ear. To detect gravity, a cluster of particles called otoconia rests atop hair cells lining the inner ear. Like a water buoy guided by the movement of waves, otoconia are displaced as the body moves. As otoconia move, they shift the hair cells, which triggers the cells to send messages to the brain.


Studies suggest that otoconia are only produced during development, and that they progressively degrade throughout life. Scientists believe otoconia become eroded during normal aging, which can lead to balance disorders. But little is understood about how otoconia develop, and whether it may be possible to stimulate the production or regeneration of these particles.

Ornitz’s team genetically analyzed two strains of mice tilted (tlt) and mergulhador (mlh) known to have problems with balance. These mice walk with their heads tilted and have trouble orienting themselves in water but have no hearing problems. Moreover, they are missing their otoconia but have normal sensory hair cells. The team discovered that the two strains both have a mutation in the same previously unidentified gene, which the researchers named Otopetrin 1 or Otop1 ("oto" means "ear" and "petra" means "stone").

"It’s possible that this is one of the genes that shuts down after development," Ornitz says. "It also is possible that it is involved in a variety of vestibular disorders. If we can find a way to reactivate this gene, we may be able to help otoconia regenerate and thereby treat or prevent balance disorders."

The study’s other principal investigators are Isolde Thalmann, Ph.D., research professor of otolaryngology, and Ruediger Thalmann, M.D., professor emiriti of otolaryngology. Postdoctoral fellow Belen Hurle, Ph.D., was first author. The School of Medicine team worked in collaboration with researchers at the University of São Paulo, Brazil.


Hurle B, Ignatova E, Massironi SM, Mashimo T, Rios X, Thalmann I, Thalmann R, Ornitz DM. Non-syndromic vestibular disorder with otoconial agenesis in Tilted mice caused by mutations in otopetrin 1. Human Molecular Genetics, April 1, 2003.

Funding from the National Institutes of Health supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>