Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better together

07.02.2011
Twin zinc atoms can direct an important organic double-bond-forming reaction with greater efficiency than other methods

Many natural compounds found in plant and animals display potent medicinal capabilities, but their intricate chemical structures prevent large-scale manufacturing.

One common difficulty is synthesizing carbon–carbon double bonds, or alkenes, on the exterior of a molecular framework—a reactive and relatively unstable location. Exposure of the exact mechanisms of an alkene-generating reagent with the moniker of gem-dizinc may resolve this problem, report Shinsuke Komagawa and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako and their colleagues from Kyoto University and The University of Tokyo1.

To transform terminal carbon–oxygen double bonds, or carbonyl groups, into alkenes via a short-lived complex that connects two carbon atoms together, chemists classically turn to organophosphorus salts known as Wittig reagents. Sometimes, however, these reagents fail to react with carbonyls or give unwanted by-products, fueling a search for new substances with improved activity and better structural control.

gem-Dizinc compounds are Wittig-type reagents that can produce a wide range of terminal alkenes quickly and at room temperature. They consist of twin zinc atoms that sandwich a methylene (CH2) unit. Despite these synthetic advantages, the use of gem-dizinc reagents remains limited because their structures are unstable and their modes of action controversial; some mechanistic features have eluded discovery for nearly forty years.

Komagawa, Uchiyama, and their team tackled this challenge by first using detailed spectroscopic experiments to identify the active form of the metal complex. Dizinc compounds can readily react with each other to make dimers, polymers, or cyclic structures. However, their measurements conclusively demonstrated that the single monomer was the dominant chemical species.

The researchers took this information as the starting point for sophisticated density functional theory calculations of the reaction pathways. Their simulations showed that alkene formation takes place in two steps: initially, gem-dizinc adds to the carbonyl and forms a cyclic complex. Then, the carbon–carbon double bond is created after gem-dizinc swaps its methylene unit for an oxygen atom. They found that the key factor in making this process so efficient was a cooperative ‘push–pull synergy’ between zinc metals that drove the transformation without having to shuffle electrons between different atoms, making this process quicker than other approaches.

According to Komagawa, these results should help spur the logical design of even better complexes. “The comprehensive mechanistic knowledge acquired in this approach will drive the next stage of this chemistry—more efficient metal reagents that improve the yield and selectivity of alkene formation,” he says.

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute.

Journal information

1.Sada, M., Komagawa, S., Uchiyama, M., Kobata, M., Mizuno, T., Utimoto, K., Oshima, K. & Matsubara, S. Reaction pathway of methylenation of carbonyl compounds with bis(iodozincio)methane. Journal of the American Chemical Society 132, 17452–17458 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>