Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better together

07.02.2011
Twin zinc atoms can direct an important organic double-bond-forming reaction with greater efficiency than other methods

Many natural compounds found in plant and animals display potent medicinal capabilities, but their intricate chemical structures prevent large-scale manufacturing.

One common difficulty is synthesizing carbon–carbon double bonds, or alkenes, on the exterior of a molecular framework—a reactive and relatively unstable location. Exposure of the exact mechanisms of an alkene-generating reagent with the moniker of gem-dizinc may resolve this problem, report Shinsuke Komagawa and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako and their colleagues from Kyoto University and The University of Tokyo1.

To transform terminal carbon–oxygen double bonds, or carbonyl groups, into alkenes via a short-lived complex that connects two carbon atoms together, chemists classically turn to organophosphorus salts known as Wittig reagents. Sometimes, however, these reagents fail to react with carbonyls or give unwanted by-products, fueling a search for new substances with improved activity and better structural control.

gem-Dizinc compounds are Wittig-type reagents that can produce a wide range of terminal alkenes quickly and at room temperature. They consist of twin zinc atoms that sandwich a methylene (CH2) unit. Despite these synthetic advantages, the use of gem-dizinc reagents remains limited because their structures are unstable and their modes of action controversial; some mechanistic features have eluded discovery for nearly forty years.

Komagawa, Uchiyama, and their team tackled this challenge by first using detailed spectroscopic experiments to identify the active form of the metal complex. Dizinc compounds can readily react with each other to make dimers, polymers, or cyclic structures. However, their measurements conclusively demonstrated that the single monomer was the dominant chemical species.

The researchers took this information as the starting point for sophisticated density functional theory calculations of the reaction pathways. Their simulations showed that alkene formation takes place in two steps: initially, gem-dizinc adds to the carbonyl and forms a cyclic complex. Then, the carbon–carbon double bond is created after gem-dizinc swaps its methylene unit for an oxygen atom. They found that the key factor in making this process so efficient was a cooperative ‘push–pull synergy’ between zinc metals that drove the transformation without having to shuffle electrons between different atoms, making this process quicker than other approaches.

According to Komagawa, these results should help spur the logical design of even better complexes. “The comprehensive mechanistic knowledge acquired in this approach will drive the next stage of this chemistry—more efficient metal reagents that improve the yield and selectivity of alkene formation,” he says.

The corresponding author for this highlight is based at the Advanced Elements Chemistry Research Team, RIKEN Advanced Science Institute.

Journal information

1.Sada, M., Komagawa, S., Uchiyama, M., Kobata, M., Mizuno, T., Utimoto, K., Oshima, K. & Matsubara, S. Reaction pathway of methylenation of carbonyl compounds with bis(iodozincio)methane. Journal of the American Chemical Society 132, 17452–17458 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>