Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Biochemists Develop Technology to Increase Vitamin C in Plants

06.03.2003


Biochemist Daniel Gallie of UC Riverside. (Photo credit: Steve Walag.)


Biochemist Daniel R. Gallie at the University of California, Riverside and his research team of Zhong Chen, Todd Young, Jun Ling, and Su-Chih Chang report in the March 18, 2003, issue of the Proceedings of the National Academy of Sciences (PNAS) that they have developed technology that increases the amount of vitamin C in plants, including grains, by increasing the amount of the enzyme that is responsible for recycling vitamin C. "The ability to increase the level of vitamin C in plant food will enhance their nutritive value," said Gallie, who is professor of biochemistry. The research was funded by the U.S. Department of Agriculture and the University of California Agricultural Experiment Station over the last 5 years.

Vitamin C, or ascorbic acid, is essential to prevent diseases, such as scurvy, that affect the connective tissue. It also improves cardiovascular and immune cell function and is used to regenerate vitamin E. In contrast to most animals, humans cannot make vitamin C and it must, therefore, be obtained regularly from dietary sources. Vitamin C is present at high levels in some fruits such as citrus and some green leafy vegetables, but present in low levels in those crops most important to humans such as grains.

"Once used, vitamin C can be regenerated by the enzyme dehydroascorbate reductase or DHAR," explained Gallie. "Through this means, plants recycle the vitamin so that it can be used repeatedly. If vitamin C is not salvaged by DHAR, it is quickly lost."



In the PNAS paper, the authors reason that increasing the amount of DHAR in plants might improve their ability to recycle vitamin C and thereby increase its amount. To examine this, the researchers introduced the gene encoding DHAR from wheat into corn to increase the amount of DHAR by up to 100-fold.

"We found that the increase in DHAR elevated the amount of vitamin C in grain and leaves of corn, showing that the vitamin C content of plants can indeed be elevated by increasing expression of the enzyme responsible for recycling the vitamin," said Gallie.

The researchers achieved similar results using a member of the solanaceae family (this family comprises, for example, potatoes and tomatoes), which was used as a model for non-grain crops.

"This technology improves nutrition by increasing the number of foods from which the vitamin can be obtained as well as increasing the level of the vitamin in those foods which are already good sources of vitamin C," said Gallie.

The current recommended dietary allowance (RDA) of vitamin C is 75 mg for adult women and 90 mg for adult men, which is sufficient to prevent diseases arising from severe vitamin C deficiency such as scurvy. This amount can be obtained through a balanced diet that emphasizes fresh green leafy vegetables and citrus. However, these foods are often not sufficiently represented in the diet and up to 30% of the population fail to achieve the RDA for this vitamin.

"Some studies have indicated that higher amounts of the vitamin may be necessary to ensure good cardiovascular health and immune cell function which has led to a recommendation that the RDA for vitamin C be increased to a minimum of 200 mg," said Gallie. "Increasing the RDA for vitamin C would mean a greater dietary emphasis of foodstuffs rich in the vitamin. Because the number of plant foods rich in vitamin C is limited, our ability to increase the vitamin C content in foods provides an important means by which the level of this vitamin can be increased in green leafy crops as well as in grains and should make it easier for people to obtain enough of the vitamin for their optimal health."

The UCR Department of Biochemistry engages in basic biochemical and molecular biological research and instruction. Areas of research specialization represented within the Biochemistry Department and its Graduate Program span contemporary biochemistry from the cellular to the molecular level and include the following areas of concentration: molecular biology, physical biochemistry, molecular endocrinology, plant biochemistry & molecular biology, signal transduction, and biomedical research.

Additional Contacts:
Dr. Daniel Gallie

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=538
http://www.pnas.org/
http://www.biochemistry.ucr.edu/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>