Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Biochemists Develop Technology to Increase Vitamin C in Plants

06.03.2003


Biochemist Daniel Gallie of UC Riverside. (Photo credit: Steve Walag.)


Biochemist Daniel R. Gallie at the University of California, Riverside and his research team of Zhong Chen, Todd Young, Jun Ling, and Su-Chih Chang report in the March 18, 2003, issue of the Proceedings of the National Academy of Sciences (PNAS) that they have developed technology that increases the amount of vitamin C in plants, including grains, by increasing the amount of the enzyme that is responsible for recycling vitamin C. "The ability to increase the level of vitamin C in plant food will enhance their nutritive value," said Gallie, who is professor of biochemistry. The research was funded by the U.S. Department of Agriculture and the University of California Agricultural Experiment Station over the last 5 years.

Vitamin C, or ascorbic acid, is essential to prevent diseases, such as scurvy, that affect the connective tissue. It also improves cardiovascular and immune cell function and is used to regenerate vitamin E. In contrast to most animals, humans cannot make vitamin C and it must, therefore, be obtained regularly from dietary sources. Vitamin C is present at high levels in some fruits such as citrus and some green leafy vegetables, but present in low levels in those crops most important to humans such as grains.

"Once used, vitamin C can be regenerated by the enzyme dehydroascorbate reductase or DHAR," explained Gallie. "Through this means, plants recycle the vitamin so that it can be used repeatedly. If vitamin C is not salvaged by DHAR, it is quickly lost."



In the PNAS paper, the authors reason that increasing the amount of DHAR in plants might improve their ability to recycle vitamin C and thereby increase its amount. To examine this, the researchers introduced the gene encoding DHAR from wheat into corn to increase the amount of DHAR by up to 100-fold.

"We found that the increase in DHAR elevated the amount of vitamin C in grain and leaves of corn, showing that the vitamin C content of plants can indeed be elevated by increasing expression of the enzyme responsible for recycling the vitamin," said Gallie.

The researchers achieved similar results using a member of the solanaceae family (this family comprises, for example, potatoes and tomatoes), which was used as a model for non-grain crops.

"This technology improves nutrition by increasing the number of foods from which the vitamin can be obtained as well as increasing the level of the vitamin in those foods which are already good sources of vitamin C," said Gallie.

The current recommended dietary allowance (RDA) of vitamin C is 75 mg for adult women and 90 mg for adult men, which is sufficient to prevent diseases arising from severe vitamin C deficiency such as scurvy. This amount can be obtained through a balanced diet that emphasizes fresh green leafy vegetables and citrus. However, these foods are often not sufficiently represented in the diet and up to 30% of the population fail to achieve the RDA for this vitamin.

"Some studies have indicated that higher amounts of the vitamin may be necessary to ensure good cardiovascular health and immune cell function which has led to a recommendation that the RDA for vitamin C be increased to a minimum of 200 mg," said Gallie. "Increasing the RDA for vitamin C would mean a greater dietary emphasis of foodstuffs rich in the vitamin. Because the number of plant foods rich in vitamin C is limited, our ability to increase the vitamin C content in foods provides an important means by which the level of this vitamin can be increased in green leafy crops as well as in grains and should make it easier for people to obtain enough of the vitamin for their optimal health."

The UCR Department of Biochemistry engages in basic biochemical and molecular biological research and instruction. Areas of research specialization represented within the Biochemistry Department and its Graduate Program span contemporary biochemistry from the cellular to the molecular level and include the following areas of concentration: molecular biology, physical biochemistry, molecular endocrinology, plant biochemistry & molecular biology, signal transduction, and biomedical research.

Additional Contacts:
Dr. Daniel Gallie

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=538
http://www.pnas.org/
http://www.biochemistry.ucr.edu/

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>