Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Biochemists Develop Technology to Increase Vitamin C in Plants

06.03.2003


Biochemist Daniel Gallie of UC Riverside. (Photo credit: Steve Walag.)


Biochemist Daniel R. Gallie at the University of California, Riverside and his research team of Zhong Chen, Todd Young, Jun Ling, and Su-Chih Chang report in the March 18, 2003, issue of the Proceedings of the National Academy of Sciences (PNAS) that they have developed technology that increases the amount of vitamin C in plants, including grains, by increasing the amount of the enzyme that is responsible for recycling vitamin C. "The ability to increase the level of vitamin C in plant food will enhance their nutritive value," said Gallie, who is professor of biochemistry. The research was funded by the U.S. Department of Agriculture and the University of California Agricultural Experiment Station over the last 5 years.

Vitamin C, or ascorbic acid, is essential to prevent diseases, such as scurvy, that affect the connective tissue. It also improves cardiovascular and immune cell function and is used to regenerate vitamin E. In contrast to most animals, humans cannot make vitamin C and it must, therefore, be obtained regularly from dietary sources. Vitamin C is present at high levels in some fruits such as citrus and some green leafy vegetables, but present in low levels in those crops most important to humans such as grains.

"Once used, vitamin C can be regenerated by the enzyme dehydroascorbate reductase or DHAR," explained Gallie. "Through this means, plants recycle the vitamin so that it can be used repeatedly. If vitamin C is not salvaged by DHAR, it is quickly lost."



In the PNAS paper, the authors reason that increasing the amount of DHAR in plants might improve their ability to recycle vitamin C and thereby increase its amount. To examine this, the researchers introduced the gene encoding DHAR from wheat into corn to increase the amount of DHAR by up to 100-fold.

"We found that the increase in DHAR elevated the amount of vitamin C in grain and leaves of corn, showing that the vitamin C content of plants can indeed be elevated by increasing expression of the enzyme responsible for recycling the vitamin," said Gallie.

The researchers achieved similar results using a member of the solanaceae family (this family comprises, for example, potatoes and tomatoes), which was used as a model for non-grain crops.

"This technology improves nutrition by increasing the number of foods from which the vitamin can be obtained as well as increasing the level of the vitamin in those foods which are already good sources of vitamin C," said Gallie.

The current recommended dietary allowance (RDA) of vitamin C is 75 mg for adult women and 90 mg for adult men, which is sufficient to prevent diseases arising from severe vitamin C deficiency such as scurvy. This amount can be obtained through a balanced diet that emphasizes fresh green leafy vegetables and citrus. However, these foods are often not sufficiently represented in the diet and up to 30% of the population fail to achieve the RDA for this vitamin.

"Some studies have indicated that higher amounts of the vitamin may be necessary to ensure good cardiovascular health and immune cell function which has led to a recommendation that the RDA for vitamin C be increased to a minimum of 200 mg," said Gallie. "Increasing the RDA for vitamin C would mean a greater dietary emphasis of foodstuffs rich in the vitamin. Because the number of plant foods rich in vitamin C is limited, our ability to increase the vitamin C content in foods provides an important means by which the level of this vitamin can be increased in green leafy crops as well as in grains and should make it easier for people to obtain enough of the vitamin for their optimal health."

The UCR Department of Biochemistry engages in basic biochemical and molecular biological research and instruction. Areas of research specialization represented within the Biochemistry Department and its Graduate Program span contemporary biochemistry from the cellular to the molecular level and include the following areas of concentration: molecular biology, physical biochemistry, molecular endocrinology, plant biochemistry & molecular biology, signal transduction, and biomedical research.

Additional Contacts:
Dr. Daniel Gallie

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=538
http://www.pnas.org/
http://www.biochemistry.ucr.edu/

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>