Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perlegen scientists find genetic basis for difference between humans and non-human primates

04.03.2003


Genomic rearrangements discovered using DNA microarrays are expected to reveal genetic regions important to human health



Mountain View, CA ¾ March 3, 2003 ¾ Perlegen Sciences, Inc. today announced the publication of a scientific paper in the latest issue of the peer-reviewed journal Genome Research. The paper, “Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates,” describes novel findings suggesting that genomic rearrangements, not single base pair changes in DNA, provide the genetic basis for the differences between humans and non-human primates such as the chimpanzee.

“This is a very surprising and important discovery of the fundamental basis of structural genomic differences between humans and other primates,” said David Cox, M.D., Ph.D, Perlegen’s Chief Scientific Officer. “It provides a valuable starting point from which to improve our understanding of what makes human beings unique.”


Analysis of the differences in sequence between human and chimpanzee DNA has previously established that the two species are approximately 98.5% identical. For this reason, it is widely accepted that qualitative and quantitative differences in gene expression are responsible for the major biological differences among humans, chimpanzees and other non-human primates. To date it has been commonly thought that single base pair changes in these genomes, not larger DNA rearrangements, would underlie the majority of these postulated genomic regulatory differences.

“Comparative genome analysis of human and non-human primates is a useful technique for deciphering the function of specific genomic regions,” commented Kelly Frazer, Ph.D., Senior Director of Genomic Biology at Perlegen and the lead author on the paper. “This study illustrates the power and versatility of Perlegen’s high-density array technology in the detection of DNA rearrangements.”

Comparison of human chromosome 21 with chimpanzee, orangutan, rhesus macaque, and woolly monkey DNA sequences identified a significant number of random genomic rearrangements between human and nonhuman primate DNA. This evidence shows, contrary to popular belief, that genomic rearrangements have occurred frequently during primate genome evolution and are a significant source of variation between humans and chimpanzees as well as other primates. These DNA rearrangements are commonly found in segments containing genes, suggesting possible functional consequences and therefore provide natural starting points for focused investigations of variations in gene expression between humans and other primates, including variations which may provide important clues in researching human health and disease.

Perlegen conducts genetics research and develops products that impact and improve people’s lives through a proprietary, cost-effective method for rapidly analyzing and comparing entire genomes. This whole genome association study capability enables Perlegen to identify genes that work in concert to cause common diseases and affect the body’s response to drugs. Perlegen has ongoing research collaborations with partners including Bristol-Myers Squibb, Eli Lilly & Co., GlaxoSmithKline, Pfizer and Unilever.



About Perlegen Sciences
Formed in late 2000 as a spin-off of Affymetrix, Inc. (Nasdaq: AFFX), Perlegen is accelerating the development of therapeutics and diagnostics and enabling a new paradigm of high-resolution whole genome scanning. For more information about Perlegen and its technologies, visit Perlegen’s web site at www.perlegen.com. Perlegen is a trademark of Perlegen Sciences, Inc.

Ana Kapor | EurekAlert!
Further information:
http://www.noonanrusso.com/

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>