Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Scientists Create First 3-D Map of Protein Universe

20.02.2003


The universe has been mapped! Not the universe of stars, planets, and black holes, but the protein universe, the vast assemblage of biological molecules that are the building blocks of living cells and control the chemical processes which make those cells work. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley have created the first three-dimensional global map of the protein structure universe. This map provides important insight into the evolution and demographics of protein structures and may help scientists identify the functions of newly discovered proteins.



Sung-Hou Kim, a chemist who holds a joint appointment with Berkeley Lab’s Physical Biosciences Division and UC Berkeley’s Chemistry Department, led the development of this map. An internationally recognized authority on protein structures, he expressed surprise at how closely the map, which is based solely on empirical data and a mathematical formula, mirrored the widely used Structural Classification System of Proteins (SCOP), which is based on the visual observations of scientists who have been solving protein structures.

"Our map shows that protein folds are broadly grouped into four different classes that correspond to the four classes of protein structures defined by SCOP," Kim says. "Some have argued that there are really only three classes of protein fold structures but now we can mathematically prove there are four."


Protein folds are recurring structural motifs or "domains" that underlie all protein architecture. Since architecture and function go hand-in-hand for proteins, solving what a protein’s structure looks like is a big step towards knowing what that protein does.

The 3-D map created by Kim and his colleagues is described in the February 17, 2003 edition of the Proceedings of the National Academy of Sciences. It shows the distribution in space of the 500 most common protein folds as represented by points which are spatially separated in proportion to their structural dissimilarities. The distribution of these points reveals a high-level of organization in the fold structures of the protein universe and shows how these structures have evolved over time, growing increasingly larger and more complex.

"When the structure of a new protein is first solved, we can place it in the appropriate location on the map and immediately know who its neighbors are and its evolutionary history which can help us predict what its function may be," Kim says. "This map provides us with a conceptual framework to organize all protein structures and functions and have that information readily available in one place."

With the completion of a "working draft" of the human genome in which scientists determined the sequences of the three billion DNA bases that make up the human genome, the big push now is to identify coding genes and the molecular and cellular functions of the proteins associated with them. Coding genes are DNA sequences that translate into sequences of amino acids which RNA assembles into proteins.

The prevailing method for predicting the function of a newly discovered protein is to compare the sequence of its amino acids to the amino acid sequences of proteins whose functions have already been identified. A major problem with relying exclusively on this approach is that while proteins in different organisms may have similar structure and function, the sequences of their amino acids may be dramatically different.

"This is because protein structure and function are much more conserved through evolution than genetically based amino acid sequences," Kim says.

Kim has been a leading advocate for grouping proteins into classes on the basis of their fold structures and using these structural similarities to help predict individual protein functions. While the protein universe may encompass as many as a trillion different kinds of proteins on earth, most structural biologists agree there are probably only about ten thousand distinctly different types of folds.

"A smaller number of new protein folds are discovered each year despite the fact that the number of protein structures determined annually is increasing exponentially," Kim says. "This and other observations strongly suggests that the total number of protein folds is dramatically smaller than the number of genes."

The rationale behind this idea is that through the eons, proteins have selectively evolved into the architectural structures best-suited to do their specific jobs. These structures essentially stay the same for proteins from all three kingdoms of life -- bacteria, archaea, and eukarya -- even though the DNA sequences encoding for a specific type of protein can wildly vary from the genome of one organism to another, and sometimes even within the same organism.

In the map created by Kim and his colleagues, elongated groups of fold distributions approximately corresponding to the four SCOP structural classifications can be clearly seen. These classifications, which are based on secondary structural compositions and topology are the "alpha" helices, "beta" strands, and two mixes of helices and strands, one called "alpha plus beta" and the other "alpha slash beta." The Berkeley map reveals that the first three groups share a common area of origin, possibly corresponding to small primordial proteins, while the "alpha slash beta" class of proteins does not emerge until much later in time.

"It is conceivable that, of the primordial peptides, those containing fragments with high helix and/or strand propensity found their way to fold into small alpha, beta, and alpha plus beta structures," Kim says. "The alpha slash beta fold structures do not appear until proteins of sufficient size rose through evolution and the formation of supersecondary structural units became possible."

Since understanding the molecular functions of proteins is key to understanding cellular functions, the map developed by Kim and his colleagues holds promise for a number of areas of biology and biomedical research, including the design of more effective pharmaceutical drugs that have fewer side-effects.

"This map can be used to help design a drug to act on a specific protein and to identify which other proteins with similar structures might also be affected by the drug," Kim says.

For the next phase of this research, Kim and his colleagues plan to tap into the supercomputers at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) to add the rest of the some 20,000 and counting known protein structures to their map. They also plan to set up a Website where researchers can submit for inclusion new protein structures they have solved.

Working with Kim on this protein universe mapping project have been Jington Hou, Gregory Sims, and Chao Zhang. The protein was funded by grants through the National Science Foundation and the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at www.lbl.gov/.


Additional Information

Sung-Hou Kim can be reached at (510)486-4333 or by e-mail at SHKim@lbl.gov

His Website can be visited at
http://www-kimgrp.lbl.gov/

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov/Science-Articles/Archive/PBD-Universe-map-Kim.html
http://www-kimgrp.lbl.gov/
http://www.berkeley.edu/news/media/releases/2003/02/18_table.shtml

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>