Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromatin structure: More folding, more complexity than expected

17.02.2003


New molecular technologies, some driven by the work of a researcher at the University of Illinois at Urbana-Champaign, are exposing unexpectedly high levels of DNA folding and complex protein-rich assemblages within the nucleus of cells that he says "seriously challenge the textbook models."



"What we are seeing suggests that there may be machinery, not yet identified, that controls the folding and the movements of enzymes that turn genes on and off," said Andrew Belmont, a professor of cell and structural biology, who is giving a talk on the subject today at the annual meeting of the American Association for the Advancement of Science.

Belmont, who also is a medical doctor, discussed current trends of research on chromatin structure during a session on "The ’New’ Nucleus: Mothership of the Human Genome." Chromatin is a part of a cell’s nucleus that contains nucleic acids and proteins -- the genetic material necessary for cell division. During mitosis, chromatin folds and condenses.


The level of folding, however, is much higher than previously thought, Belmont said, and a lot of the enzyme complexes that work on DNA, for instance to allow gene regulation, have turned out to be surprisingly large.

"In this era of genome sequencing and gene identification, the fundamental question of how DNA folds within the mitotic chromosome and interphase nucleus, and the impact of this folding on gene expression, remains largely unknown," he said.

A startling discovery, unveiled by on-going research based on a technique to study the structure in living cells that Belmont announced in late 1996, is that chromosomes are constantly in motion. They gyrate constantly within their tiny confined territories.

Advances of his own technique allow him to watch as proteins move and come together as single packages as they approach their target receptors to activate a gene.

The genetic-engineering method developed by Belmont uses a specific protein-DNA interaction in which a protein binds to a specific target in DNA without altering chromosomal structure. Naturally occurring green fluorescent protein allows for viewing area in living cells by light microscopy or electron microscopes. The results include visual proof of chromosomal fibers 100 nanometers in diameter during folding and unfolding.

"For several decades, the basic paradigm for studying chromosome structure relied primarily on experimental approaches in which nuclei were exploded and chromosomes fragmented into small, soluble pieces that could be analyzed in the test tube using biochemical techniques," Belmont said. "However, over the past several years, development of novel imaging tools have provided a new window, allowing direct visualization of chromosomes within living cells."

As a result, scientific perspectives on chromosome structure and function have been dramatically altered, he said. "The picture emerging is of a cell nucleus, apparently tranquil, but concealing chromosomes and chromosomal proteins in constant motion and turnover. This highly dynamic behavior results in quasi-stable chromosome architecture poised for rapid response to signals from the cell environment."

A current question is how large, bulky protein complexes that mediate gene transcription can find their targets and gain access to the DNA, he said.

In the February issue of the journal Current Biology, Belmont and Sevinci Memedula of the University of Bucharest suggest that large protein assemblies approach a gene target in a stepwise fashion. Individual sub-units act as pioneers. They open, or remodel, their target for subsequent binding of the larger intact protein complex

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>