Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromatin structure: More folding, more complexity than expected

17.02.2003


New molecular technologies, some driven by the work of a researcher at the University of Illinois at Urbana-Champaign, are exposing unexpectedly high levels of DNA folding and complex protein-rich assemblages within the nucleus of cells that he says "seriously challenge the textbook models."



"What we are seeing suggests that there may be machinery, not yet identified, that controls the folding and the movements of enzymes that turn genes on and off," said Andrew Belmont, a professor of cell and structural biology, who is giving a talk on the subject today at the annual meeting of the American Association for the Advancement of Science.

Belmont, who also is a medical doctor, discussed current trends of research on chromatin structure during a session on "The ’New’ Nucleus: Mothership of the Human Genome." Chromatin is a part of a cell’s nucleus that contains nucleic acids and proteins -- the genetic material necessary for cell division. During mitosis, chromatin folds and condenses.


The level of folding, however, is much higher than previously thought, Belmont said, and a lot of the enzyme complexes that work on DNA, for instance to allow gene regulation, have turned out to be surprisingly large.

"In this era of genome sequencing and gene identification, the fundamental question of how DNA folds within the mitotic chromosome and interphase nucleus, and the impact of this folding on gene expression, remains largely unknown," he said.

A startling discovery, unveiled by on-going research based on a technique to study the structure in living cells that Belmont announced in late 1996, is that chromosomes are constantly in motion. They gyrate constantly within their tiny confined territories.

Advances of his own technique allow him to watch as proteins move and come together as single packages as they approach their target receptors to activate a gene.

The genetic-engineering method developed by Belmont uses a specific protein-DNA interaction in which a protein binds to a specific target in DNA without altering chromosomal structure. Naturally occurring green fluorescent protein allows for viewing area in living cells by light microscopy or electron microscopes. The results include visual proof of chromosomal fibers 100 nanometers in diameter during folding and unfolding.

"For several decades, the basic paradigm for studying chromosome structure relied primarily on experimental approaches in which nuclei were exploded and chromosomes fragmented into small, soluble pieces that could be analyzed in the test tube using biochemical techniques," Belmont said. "However, over the past several years, development of novel imaging tools have provided a new window, allowing direct visualization of chromosomes within living cells."

As a result, scientific perspectives on chromosome structure and function have been dramatically altered, he said. "The picture emerging is of a cell nucleus, apparently tranquil, but concealing chromosomes and chromosomal proteins in constant motion and turnover. This highly dynamic behavior results in quasi-stable chromosome architecture poised for rapid response to signals from the cell environment."

A current question is how large, bulky protein complexes that mediate gene transcription can find their targets and gain access to the DNA, he said.

In the February issue of the journal Current Biology, Belmont and Sevinci Memedula of the University of Bucharest suggest that large protein assemblies approach a gene target in a stepwise fashion. Individual sub-units act as pioneers. They open, or remodel, their target for subsequent binding of the larger intact protein complex

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>