Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromatin structure: More folding, more complexity than expected

17.02.2003


New molecular technologies, some driven by the work of a researcher at the University of Illinois at Urbana-Champaign, are exposing unexpectedly high levels of DNA folding and complex protein-rich assemblages within the nucleus of cells that he says "seriously challenge the textbook models."



"What we are seeing suggests that there may be machinery, not yet identified, that controls the folding and the movements of enzymes that turn genes on and off," said Andrew Belmont, a professor of cell and structural biology, who is giving a talk on the subject today at the annual meeting of the American Association for the Advancement of Science.

Belmont, who also is a medical doctor, discussed current trends of research on chromatin structure during a session on "The ’New’ Nucleus: Mothership of the Human Genome." Chromatin is a part of a cell’s nucleus that contains nucleic acids and proteins -- the genetic material necessary for cell division. During mitosis, chromatin folds and condenses.


The level of folding, however, is much higher than previously thought, Belmont said, and a lot of the enzyme complexes that work on DNA, for instance to allow gene regulation, have turned out to be surprisingly large.

"In this era of genome sequencing and gene identification, the fundamental question of how DNA folds within the mitotic chromosome and interphase nucleus, and the impact of this folding on gene expression, remains largely unknown," he said.

A startling discovery, unveiled by on-going research based on a technique to study the structure in living cells that Belmont announced in late 1996, is that chromosomes are constantly in motion. They gyrate constantly within their tiny confined territories.

Advances of his own technique allow him to watch as proteins move and come together as single packages as they approach their target receptors to activate a gene.

The genetic-engineering method developed by Belmont uses a specific protein-DNA interaction in which a protein binds to a specific target in DNA without altering chromosomal structure. Naturally occurring green fluorescent protein allows for viewing area in living cells by light microscopy or electron microscopes. The results include visual proof of chromosomal fibers 100 nanometers in diameter during folding and unfolding.

"For several decades, the basic paradigm for studying chromosome structure relied primarily on experimental approaches in which nuclei were exploded and chromosomes fragmented into small, soluble pieces that could be analyzed in the test tube using biochemical techniques," Belmont said. "However, over the past several years, development of novel imaging tools have provided a new window, allowing direct visualization of chromosomes within living cells."

As a result, scientific perspectives on chromosome structure and function have been dramatically altered, he said. "The picture emerging is of a cell nucleus, apparently tranquil, but concealing chromosomes and chromosomal proteins in constant motion and turnover. This highly dynamic behavior results in quasi-stable chromosome architecture poised for rapid response to signals from the cell environment."

A current question is how large, bulky protein complexes that mediate gene transcription can find their targets and gain access to the DNA, he said.

In the February issue of the journal Current Biology, Belmont and Sevinci Memedula of the University of Bucharest suggest that large protein assemblies approach a gene target in a stepwise fashion. Individual sub-units act as pioneers. They open, or remodel, their target for subsequent binding of the larger intact protein complex

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>