Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the nose knows a rose - or a mate

14.02.2003


If you sniff a rose this Valentine’s Day, your brain will recognize almost a hundred different molecules that collectively give the flower its heady scent-but how? Scientists are now discovering how the brain identifies odors and their mysterious counterparts, the pheromones. New research, to be presented today at the American Association for the Advancement of Science (AAAS) Annual Meeting and forthcoming in the journal, Science, explains how the mouse brain is exquisitely tuned to recognize another mouse’s pheromone cocktail.



Researchers say that most smells hover about 10 inches off the ground, placing the human nose at a disadvantage among those of most other mammals. Nonetheless, when smells do reach the neurons inside the nose, the human brain can distinguish from among the thousands of chemicals that make up odors, and scientists are beginning to understand just how the process works.

In the last decade, the nose has been revealed as the site of a large family of sensory neurons, each of which specializes in a particular smell. Since this discovery, researchers have studied the olfactory system in rodents, following the axons that extend from neurons into the rodent brain. Their research shows that the axons from neurons with receptors for the same odor molecule congregate in the one or two glomeruli that are reserved for those axons. Glomeruli, which contain only axon terminals, are specialized structures in the olfactory bulb; the rodent brain has 2000 of them. By studying "odor maps" that show activity in certain glomeruli in response to different smells, Howard Hughes Medical Institute investigator Lawrence C. Katz of Duke University has found that each odor results in a pattern or "fingerprint," which humans and other mammals seem to use to distinguish from among different smells.


"We needed a way to ’see’ which specific glomeruli were activated by different odorants," said Katz, a professor of neurobiology at Duke. "We accomplished this by using a technique called ’optical imaging of intrinsic signals,’ which allowed us to take a picture of the bulb when it was being stimulated by a particular odor, and when it wasn’t."

While the human brain’s ability to distinguish different odors may be impressive, many mammalian brains can also identify an altogether different type of "smell." Mammals ranging from mice to elephants produce substances called pheromones, which communicate information about social status and when an individual is ready to reproduce. These signals are somehow picked up through the "accessory" olfactory system, which is separate from the "main" olfactory system that allows us to appreciate, for example, the scent of a rose bouquet.

Scientists have understood little about the accessory olfactory system, but a new mouse study by Katz and his colleagues, forthcoming in Science, should change that. It reveals that pheromone-detecting neurons in this system are carefully "tuned" to pick up on another mouse’s sex and genetic makeup. This type of smelling may thus be a handy way for certain mammals to identify potential mates (and may also help mice get around the fact that they look pretty much alike). These findings may also open the way to a better understanding of how animals communicate dominance, mating receptivity, and individuality, according to Katz and his coauthors. The researchers implanted three microelectrodes into a specific region of the mouse’s brain where they would record the activity of individual neurons responding to different pheromones. Then they added to the cage a second mouse, which was lightly anaesthetized, so that the test mouse could get close for a sniff. The test mouse’s neurons each had highly selective responses to the pheromones of the introduced mouse, depending on the introduced mouse’s genetic strain and sex. Interestingly, the face seemed to be the most important source of pheromones.

Other researchers are exploring how the axons from the sensory neurons negotiate "an extremely hostile environment" to make their way into the brain, according to Charles Greer, professor of neuroscience in the Department of Neurosurgery and Section of Neurobiology at Yale University School of Medicine. He points out that unlike the axons of any other neurons, axons from the sensory neurons travel in bundles that are wrapped in tentacle-like glial processes, offering a possible model for encouraging the growth of neurons in areas that have been damaged following spinal cord injury. "Think of the glial cells as a person with their arms wrapped around the axons," Greer said. "We’ve taken these glial cells, and have begun to make spinal cord cells functionally enervate areas."

During the AAAS Annual Meeting, a panel on olfactory research also will explore the question of "olfactory memories"-how the brain can retain memories of smells, despite rapid turnover in the sensory neurons that inhabit the nose. Katz notes that the one of the next breakthroughs in the science of the olfactory system will allow scientists "to unravel the links between olfactory perception and the formation of long-term olfactory memories."

Advance interviews possible upon request.

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science. Founded in 1848, AAAS serves 134,000 members as well as 272 affiliates, representing 10 million scientists.

For more information on the AAAS, see the web site, www.aaas.org. Additional news from the AAAS Annual Meeting may be found online at www.eurekalert.org.

MEDIA NOTE: Katz will take part in a newsbriefing during the AAAS Annual Meeting in Denver on Thursday, 13 February at 12:00 p.m. noon Mountain Time, Rooms C-110-112, in the Colorado Convention Center. Katz , Greer and other researchers will then participate in an Annual Meeting session titled, "How the Nose Knows: Neural Circuits for Chemical Detection," at 2:30 p.m. Mountain Time, Saturday, 15 February, in Room A-205 on the Main Level of the Colorado Convention Center. Reporters must register at the AAAS Press Center, Rooms C-101-103, Colorado Convention Center.


AAAS is the world’s largest general scientific society, dedicated to "Advancing science • Serving society."

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>