Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the nose knows a rose - or a mate

14.02.2003


If you sniff a rose this Valentine’s Day, your brain will recognize almost a hundred different molecules that collectively give the flower its heady scent-but how? Scientists are now discovering how the brain identifies odors and their mysterious counterparts, the pheromones. New research, to be presented today at the American Association for the Advancement of Science (AAAS) Annual Meeting and forthcoming in the journal, Science, explains how the mouse brain is exquisitely tuned to recognize another mouse’s pheromone cocktail.



Researchers say that most smells hover about 10 inches off the ground, placing the human nose at a disadvantage among those of most other mammals. Nonetheless, when smells do reach the neurons inside the nose, the human brain can distinguish from among the thousands of chemicals that make up odors, and scientists are beginning to understand just how the process works.

In the last decade, the nose has been revealed as the site of a large family of sensory neurons, each of which specializes in a particular smell. Since this discovery, researchers have studied the olfactory system in rodents, following the axons that extend from neurons into the rodent brain. Their research shows that the axons from neurons with receptors for the same odor molecule congregate in the one or two glomeruli that are reserved for those axons. Glomeruli, which contain only axon terminals, are specialized structures in the olfactory bulb; the rodent brain has 2000 of them. By studying "odor maps" that show activity in certain glomeruli in response to different smells, Howard Hughes Medical Institute investigator Lawrence C. Katz of Duke University has found that each odor results in a pattern or "fingerprint," which humans and other mammals seem to use to distinguish from among different smells.


"We needed a way to ’see’ which specific glomeruli were activated by different odorants," said Katz, a professor of neurobiology at Duke. "We accomplished this by using a technique called ’optical imaging of intrinsic signals,’ which allowed us to take a picture of the bulb when it was being stimulated by a particular odor, and when it wasn’t."

While the human brain’s ability to distinguish different odors may be impressive, many mammalian brains can also identify an altogether different type of "smell." Mammals ranging from mice to elephants produce substances called pheromones, which communicate information about social status and when an individual is ready to reproduce. These signals are somehow picked up through the "accessory" olfactory system, which is separate from the "main" olfactory system that allows us to appreciate, for example, the scent of a rose bouquet.

Scientists have understood little about the accessory olfactory system, but a new mouse study by Katz and his colleagues, forthcoming in Science, should change that. It reveals that pheromone-detecting neurons in this system are carefully "tuned" to pick up on another mouse’s sex and genetic makeup. This type of smelling may thus be a handy way for certain mammals to identify potential mates (and may also help mice get around the fact that they look pretty much alike). These findings may also open the way to a better understanding of how animals communicate dominance, mating receptivity, and individuality, according to Katz and his coauthors. The researchers implanted three microelectrodes into a specific region of the mouse’s brain where they would record the activity of individual neurons responding to different pheromones. Then they added to the cage a second mouse, which was lightly anaesthetized, so that the test mouse could get close for a sniff. The test mouse’s neurons each had highly selective responses to the pheromones of the introduced mouse, depending on the introduced mouse’s genetic strain and sex. Interestingly, the face seemed to be the most important source of pheromones.

Other researchers are exploring how the axons from the sensory neurons negotiate "an extremely hostile environment" to make their way into the brain, according to Charles Greer, professor of neuroscience in the Department of Neurosurgery and Section of Neurobiology at Yale University School of Medicine. He points out that unlike the axons of any other neurons, axons from the sensory neurons travel in bundles that are wrapped in tentacle-like glial processes, offering a possible model for encouraging the growth of neurons in areas that have been damaged following spinal cord injury. "Think of the glial cells as a person with their arms wrapped around the axons," Greer said. "We’ve taken these glial cells, and have begun to make spinal cord cells functionally enervate areas."

During the AAAS Annual Meeting, a panel on olfactory research also will explore the question of "olfactory memories"-how the brain can retain memories of smells, despite rapid turnover in the sensory neurons that inhabit the nose. Katz notes that the one of the next breakthroughs in the science of the olfactory system will allow scientists "to unravel the links between olfactory perception and the formation of long-term olfactory memories."

Advance interviews possible upon request.

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science. Founded in 1848, AAAS serves 134,000 members as well as 272 affiliates, representing 10 million scientists.

For more information on the AAAS, see the web site, www.aaas.org. Additional news from the AAAS Annual Meeting may be found online at www.eurekalert.org.

MEDIA NOTE: Katz will take part in a newsbriefing during the AAAS Annual Meeting in Denver on Thursday, 13 February at 12:00 p.m. noon Mountain Time, Rooms C-110-112, in the Colorado Convention Center. Katz , Greer and other researchers will then participate in an Annual Meeting session titled, "How the Nose Knows: Neural Circuits for Chemical Detection," at 2:30 p.m. Mountain Time, Saturday, 15 February, in Room A-205 on the Main Level of the Colorado Convention Center. Reporters must register at the AAAS Press Center, Rooms C-101-103, Colorado Convention Center.


AAAS is the world’s largest general scientific society, dedicated to "Advancing science • Serving society."

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>