Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the nose knows a rose - or a mate

14.02.2003


If you sniff a rose this Valentine’s Day, your brain will recognize almost a hundred different molecules that collectively give the flower its heady scent-but how? Scientists are now discovering how the brain identifies odors and their mysterious counterparts, the pheromones. New research, to be presented today at the American Association for the Advancement of Science (AAAS) Annual Meeting and forthcoming in the journal, Science, explains how the mouse brain is exquisitely tuned to recognize another mouse’s pheromone cocktail.



Researchers say that most smells hover about 10 inches off the ground, placing the human nose at a disadvantage among those of most other mammals. Nonetheless, when smells do reach the neurons inside the nose, the human brain can distinguish from among the thousands of chemicals that make up odors, and scientists are beginning to understand just how the process works.

In the last decade, the nose has been revealed as the site of a large family of sensory neurons, each of which specializes in a particular smell. Since this discovery, researchers have studied the olfactory system in rodents, following the axons that extend from neurons into the rodent brain. Their research shows that the axons from neurons with receptors for the same odor molecule congregate in the one or two glomeruli that are reserved for those axons. Glomeruli, which contain only axon terminals, are specialized structures in the olfactory bulb; the rodent brain has 2000 of them. By studying "odor maps" that show activity in certain glomeruli in response to different smells, Howard Hughes Medical Institute investigator Lawrence C. Katz of Duke University has found that each odor results in a pattern or "fingerprint," which humans and other mammals seem to use to distinguish from among different smells.


"We needed a way to ’see’ which specific glomeruli were activated by different odorants," said Katz, a professor of neurobiology at Duke. "We accomplished this by using a technique called ’optical imaging of intrinsic signals,’ which allowed us to take a picture of the bulb when it was being stimulated by a particular odor, and when it wasn’t."

While the human brain’s ability to distinguish different odors may be impressive, many mammalian brains can also identify an altogether different type of "smell." Mammals ranging from mice to elephants produce substances called pheromones, which communicate information about social status and when an individual is ready to reproduce. These signals are somehow picked up through the "accessory" olfactory system, which is separate from the "main" olfactory system that allows us to appreciate, for example, the scent of a rose bouquet.

Scientists have understood little about the accessory olfactory system, but a new mouse study by Katz and his colleagues, forthcoming in Science, should change that. It reveals that pheromone-detecting neurons in this system are carefully "tuned" to pick up on another mouse’s sex and genetic makeup. This type of smelling may thus be a handy way for certain mammals to identify potential mates (and may also help mice get around the fact that they look pretty much alike). These findings may also open the way to a better understanding of how animals communicate dominance, mating receptivity, and individuality, according to Katz and his coauthors. The researchers implanted three microelectrodes into a specific region of the mouse’s brain where they would record the activity of individual neurons responding to different pheromones. Then they added to the cage a second mouse, which was lightly anaesthetized, so that the test mouse could get close for a sniff. The test mouse’s neurons each had highly selective responses to the pheromones of the introduced mouse, depending on the introduced mouse’s genetic strain and sex. Interestingly, the face seemed to be the most important source of pheromones.

Other researchers are exploring how the axons from the sensory neurons negotiate "an extremely hostile environment" to make their way into the brain, according to Charles Greer, professor of neuroscience in the Department of Neurosurgery and Section of Neurobiology at Yale University School of Medicine. He points out that unlike the axons of any other neurons, axons from the sensory neurons travel in bundles that are wrapped in tentacle-like glial processes, offering a possible model for encouraging the growth of neurons in areas that have been damaged following spinal cord injury. "Think of the glial cells as a person with their arms wrapped around the axons," Greer said. "We’ve taken these glial cells, and have begun to make spinal cord cells functionally enervate areas."

During the AAAS Annual Meeting, a panel on olfactory research also will explore the question of "olfactory memories"-how the brain can retain memories of smells, despite rapid turnover in the sensory neurons that inhabit the nose. Katz notes that the one of the next breakthroughs in the science of the olfactory system will allow scientists "to unravel the links between olfactory perception and the formation of long-term olfactory memories."

Advance interviews possible upon request.

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society, and publisher of the journal, Science. Founded in 1848, AAAS serves 134,000 members as well as 272 affiliates, representing 10 million scientists.

For more information on the AAAS, see the web site, www.aaas.org. Additional news from the AAAS Annual Meeting may be found online at www.eurekalert.org.

MEDIA NOTE: Katz will take part in a newsbriefing during the AAAS Annual Meeting in Denver on Thursday, 13 February at 12:00 p.m. noon Mountain Time, Rooms C-110-112, in the Colorado Convention Center. Katz , Greer and other researchers will then participate in an Annual Meeting session titled, "How the Nose Knows: Neural Circuits for Chemical Detection," at 2:30 p.m. Mountain Time, Saturday, 15 February, in Room A-205 on the Main Level of the Colorado Convention Center. Reporters must register at the AAAS Press Center, Rooms C-101-103, Colorado Convention Center.


AAAS is the world’s largest general scientific society, dedicated to "Advancing science • Serving society."

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>