Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic ‘fishing net’ harvests elusive autism gene

07.02.2003


Duke University Medical Center researchers have developed a new statistical genetic "fishing net" that they have cast into a sea of complex genetic data on autistic children to harvest an elusive autism gene.



Moreover, the researchers said that the success of the approach will be broadly applicable to studying genetic risk factors for other complex genetic diseases, such as hypertension, diabetes and multiple sclerosis.

In this case, the gene, which encodes part of a brain neurotransmitter docking station called the gamma-Aminobutyric Acid Receptor beta3-subunit (GABRB3), has been implicated in autism previously, but never positively linked to the disease. Their findings will be published in the March 2003 issue of the American Journal of Human Genetics and is now available on the Web at http://www.journals.uchicago.edu/AJHG/journal/issues/v72n3/024607/024607.html.


"Many research groups have been actively looking for genetic risk factors that can lead to autism, but without much success," said Margaret Pericak-Vance, Ph.D., director of the Duke Center for Human Genetics and lead investigator of the study.

Autism is the common term that encompasses an overlapping group of complex developmental disorders that are diagnosed in about one in 1,000 children under the age of 3. Each autistic child has a unique set of characteristics that affect his or her behavior, communication skills and ability to interact with others. It is the very diverse, complex nature of autism that has made it so difficult to locate distinct genetic risk factors, said Pericak-Vance.

After several genetic studies turned up only a few vague genetic clues, the research team decided a new approach was needed. Pericak-Vance hypothesized that grouping patients with similar traits together statistically might enhance the scientists’ ability to distinguish relevant genetic risk factors. To provide guidance, the scientists turned to Michael Cuccaro, Ph.D., a clinical child psychologist at Duke with extensive experience diagnosing and treating autism. Cuccaro noticed that some but not all autistic children exhibit repetitive compulsions and extreme difficulty with changes to their daily routine. This character trait -- defined by Cuccaro as "insistence on sameness" or "IS" -- helped the research team identify a subset of autism family data to study in more detail.

Researchers, led by Yujun Shao, Ph.D., a genetic epidemiologist at Duke, reorganized data collected from families in which more than one child is affected by autism and grouped together all the families that reported their autistic child had difficulty with change.

Cuccaro’s theory that autistic children could be subdivided into at least two groups gave the team of scientists from Duke and the University of South Carolina an opportunity to test a new statistical method, called "ordered subset analysis," developed by Elizabeth Hauser, Ph.D., assistant research professor of medicine at Duke. This new genetic fishing net allows scientists to sift through complex genetic data and extract genetic risk factors that affect only some of the total group.

In this case, when the researchers applied the new test only to those families whose children scored high in the IS category, they discovered a strong link to the GABRB3 gene on chromosome 15q, where no such link had appeared before.

"This is the first successful application of ordered subset analysis to help us pinpoint a genetic risk factor that would be missed by looking at the larger group." said Pericak-Vance.

The researchers emphasize that this discovery is only the first step in understanding how the GABRB3 gene, or others genes in the same region of chromosome 15 might be involved in autism. Another clue may be gained from previous research that has shown the same area on chromosome 15 is just as responsible for Angelman Syndrome and Prader-Willi Syndrome -- two genetic disorders in which a subset of affected children also exhibit repetitive behavior. Additional research will be necessary to understand how defects in the GABRB3 gene might contribute to autistic disorder, and how other genes or environmental factors also play a role.

"In the short term, however, I think what this will allow us to do is encourage clinicians and researchers working with autistic children to think about autism as consisting of different types or subgroups and not a one-dimensional disorder," said Cuccaro. "I think that subgrouping, over time, will allow us to develop a better understanding of how to treat each individual with autism."

This is a case, said Cuccaro, where identifying subsets of patients based on clinical observations has resulted in a significant neurobiological finding, and it perhaps is pointing a way to bring clinical observations to bear on complex genetic problems.

"The genomic revolution has given us a tremendous wealth of information in terms of a road map and markers for finding disease genes," said Pericak-Vance. "Now, we need to be able to look at complex clinical information and come up with methods that can help us dissect diseases that have multiple risk factors. This new statistical test will allow us to find meaningful genetic risk factors that are diluted out when tested as part of a larger heterogeneous group."


Members of the research team also included Marissa Menold, Chantelle Wolpert, Leigh Elston, Karen Decena, Shannon Donnelly, Robert DeLong, M.D., and John Gilbert, Ph.D., of Duke; and Sarah Ravan, Ruth Abramson and Harry Wright, M.D., of the W.S. Hall Psychiatric Institute at the University of South Carolina. The research was supported by grants from the National Institutes of Health and the National Alliance of Autism Research.

Richard Puff | EurekAlert!
Further information:
http://dukemednews.org/news/article.php?id=6385
http://www.journals.uchicago.edu/AJHG/journal/issues/v72n3/024607/024607.html

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>