Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researcher studies newly discovered ’good’ cholesterol gene

04.02.2003


Stanford University Medical Center researchers have found that a recently discovered gene regulates HDL (high density lipoproteins) cholesterol, also known as "good" cholesterol. The study, published in the February issue of the Journal of Clinical Investigation, could lead to new therapies for heart disease, said lead author Thomas Quertermous, MD.



"This is a significant and unexpected finding, and the gene is going to be a real target for the prevention and treatment of heart disease," said Quertermous, the William G. Irwin Professor and chief of cardiovascular medicine at Stanford University School of Medicine. "This type of thing doesn’t happen every day."

HDL cholesterol, often referred to as the "good" cholesterol, has been proven to impact a person’s risk of developing heart disease. "HDL cholesterol is an independent predictor of one’s risk," said Quertermous. "If you have a high level of HDL cholesterol your chance of getting heart disease is very low."


Researchers know that levels of HDL cholesterol are regulated in part by members of the lipase gene family. Three years ago, Quertermous’ team and a laboratory on the East Coast simultaneously discovered the newest member of that family and found that its protein was expressed in a variety of tissues. Subsequent studies showed that the new gene - the endothelial lipase gene (LIPG) - played a role in lipid metabolism.

"It was a striking, if not dramatic, finding that this gene that we found in the blood vessel walls appeared to regulate HDL cholesterol levels," said Quertermous.

Quertermous’ team sought to examine the gene’s exact role in regulating HDL cholesterol level by examining genetic models with altered levels of endothelial lipase (EL) expression. Working with mouse models, the researchers increased EL expression in one group by inserting copies of the human gene and decreased EL expression by knocking out the LIPG gene in another group.

Quertermous reports that the findings were striking: Altering the genes showed a clear and significant inverse relationship between HDL cholesterol level and EL expression. Levels of HDL cholesterol decreased by 19 percent in the first group and increased by 57 percent in the group whose gene was knocked out.

"When we overexpressed the human gene in the mice, the HDL cholesterol levels dropped," said Quertermous. "Conversely, when we knocked out the gene in mice, the levels were much higher."

Quertermous said that his team lacks insight into the mechanism by which EL impacts HDL cholesterol levels, and that this is something his team will explore. The group will also further study mouse models, and a group of human patients, to see if changes in HDL cholesterol levels directly correlate with heart disease. "My hypothesis - and strong suspicion - is that if you knock out the gene, your chance of disease development is decreased," said Quertermous.

Quertermous said a greater understanding of this gene’s role in HDL cholesterol’s formation and metabolism will help researchers regulate this risk factor. "This becomes one of the most attractive targets available for the development of pharmaceutical agents to modulate HDL cholesterol levels," he said.


The research was done at the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford, which was established with a grant from the Donald W. Reynolds Foundation. Quertermous’ collaborators on the study include Allen Cooper, MD, professor of medicine at Stanford, and researchers at the Palo Alto Medical Foundation.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Michelle Brandt at (650) 723-0272 (mbrandt@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Michelle Brandt | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>