Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researcher studies newly discovered ’good’ cholesterol gene

04.02.2003


Stanford University Medical Center researchers have found that a recently discovered gene regulates HDL (high density lipoproteins) cholesterol, also known as "good" cholesterol. The study, published in the February issue of the Journal of Clinical Investigation, could lead to new therapies for heart disease, said lead author Thomas Quertermous, MD.



"This is a significant and unexpected finding, and the gene is going to be a real target for the prevention and treatment of heart disease," said Quertermous, the William G. Irwin Professor and chief of cardiovascular medicine at Stanford University School of Medicine. "This type of thing doesn’t happen every day."

HDL cholesterol, often referred to as the "good" cholesterol, has been proven to impact a person’s risk of developing heart disease. "HDL cholesterol is an independent predictor of one’s risk," said Quertermous. "If you have a high level of HDL cholesterol your chance of getting heart disease is very low."


Researchers know that levels of HDL cholesterol are regulated in part by members of the lipase gene family. Three years ago, Quertermous’ team and a laboratory on the East Coast simultaneously discovered the newest member of that family and found that its protein was expressed in a variety of tissues. Subsequent studies showed that the new gene - the endothelial lipase gene (LIPG) - played a role in lipid metabolism.

"It was a striking, if not dramatic, finding that this gene that we found in the blood vessel walls appeared to regulate HDL cholesterol levels," said Quertermous.

Quertermous’ team sought to examine the gene’s exact role in regulating HDL cholesterol level by examining genetic models with altered levels of endothelial lipase (EL) expression. Working with mouse models, the researchers increased EL expression in one group by inserting copies of the human gene and decreased EL expression by knocking out the LIPG gene in another group.

Quertermous reports that the findings were striking: Altering the genes showed a clear and significant inverse relationship between HDL cholesterol level and EL expression. Levels of HDL cholesterol decreased by 19 percent in the first group and increased by 57 percent in the group whose gene was knocked out.

"When we overexpressed the human gene in the mice, the HDL cholesterol levels dropped," said Quertermous. "Conversely, when we knocked out the gene in mice, the levels were much higher."

Quertermous said that his team lacks insight into the mechanism by which EL impacts HDL cholesterol levels, and that this is something his team will explore. The group will also further study mouse models, and a group of human patients, to see if changes in HDL cholesterol levels directly correlate with heart disease. "My hypothesis - and strong suspicion - is that if you knock out the gene, your chance of disease development is decreased," said Quertermous.

Quertermous said a greater understanding of this gene’s role in HDL cholesterol’s formation and metabolism will help researchers regulate this risk factor. "This becomes one of the most attractive targets available for the development of pharmaceutical agents to modulate HDL cholesterol levels," he said.


The research was done at the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford, which was established with a grant from the Donald W. Reynolds Foundation. Quertermous’ collaborators on the study include Allen Cooper, MD, professor of medicine at Stanford, and researchers at the Palo Alto Medical Foundation.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Michelle Brandt at (650) 723-0272 (mbrandt@stanford.edu)
BROADCAST MEDIA CONTACT: Neale Mulligan at (650) 724-2454 (nealem@stanford.edu)

Michelle Brandt | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>