Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using RNA interference to tune gene activity in stem cells

03.02.2003


New method for the study and treatment of disease



The application of RNA interference (RNAi) to the study of mammalian biology and disease has the potential to revolutionize biomedical research and speed the development of novel therapeutic strategies.

A series of studies by Greg Hannon at Cold Spring Harbor Laboratory (CSHL) have revealed a great deal of information about the mechanism of RNAi, as well as how RNAi can be adapted for use in medical research. These and other studies led Science to name discoveries concerning RNAi the "Breakthrough of the Year" for 2002 among all of the sciences.


Now, researchers at CSHL have shown that RNAi can be used to set the level of gene activity in stem cells on "low," "medium," or "high."

The new study indicates that stable suppression of deleterious genes by RNAi--in which adult stem cells are isolated, modified ex vivo, and then re-introduced into the affected individual--might be an effective strategy for treating human disease.

The study, published in the February issue of Nature Genetics, focussed on the role of a tumor suppressor gene called p53 in a mouse model of lymphoma.

In the mouse model, forced expression of the Myc oncogene in B-cells causes the mice to develop B-cell lymphomas by 4 to 6 months of age. The scientists, led by Greg Hannon and his CSHL colleague, Scott Lowe, knew that completely deleting the p53 gene causes lymphomas to develop much sooner, and in a more aggressive, highly-invasive form, than lymphomas that develop when the p53 gene is present.

To test the effect of decreasing p53 to particular levels via RNA interference, the scientists reconstituted the blood cells of mice by first irradiating the animals to destroy their endogenous, bone marrow supply of hematopoietic stem cells, and then injected the mice with a fresh supply of hematopoietic stem cells that had been engineered through RNAi to produce low, medium, or high levels of p53.

The study showed that establishing different levels of p53 in B-cells by RNAi produces distinct forms of lymphoma. Similar to lymphomas that form in the absence of p53, lymphomas that formed in mice with low p53 levels developed rapidly (reaching terminal stage after 66 days, on average), infiltrated lung, liver, and spleen tissues, and showed little apoptosis or "programmed cell death."

In contrast, lymphomas that formed in mice with intermediate p53 levels developed less rapidly (reaching terminal stage after 95 days, on average), did not infiltrate lung, liver, or spleen tissues, and showed high levels of apoptosis. In mice with high B-cell p53 levels, lymphomas did not develop at an accelerated rate, and these mice did not experience decreased survival rates compared to control mice.

The study illustrates the ease with which RNAi "gene knockdowns" can be used to create a full range of mild to severe phenotypes (something that geneticists dream about), as well as the potential of RNAi in developing stem cell-based and other therapeutic strategies.

Along with a recent study by Hannon and his colleagues that demonstrated germline transmission of RNAi, the current study establishes RNAi as a convenient alternative to traditional, laborious, and less flexible homologous recombination-based gene knockout strategies for studying the effects of reduced gene expression in a wide variety of settings.

Peter Sherwood | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>