Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse genetic model for spongiform brain diseases

31.01.2003


Cornell geneticist Teresa Gunn displays a mahoganoid mutant mouse, a possible animal model for brain disease in humans.


Some mice with a genetic mutation for mahogany-colored coats also develop spongiform degeneration of brain tissue, similar to mad cow disease. Because of this oddity, the mice could be valuable animal models for human disorders, such as Parkinson’s and Alzheimer’s diseases, according to geneticists at Cornell and Stanford universities.

The surprising discovery in a mouse strain known to geneticists since the 1960s is reported in the latest issue of the journal Science (Jan. 31, 2003) by Teresa M. Gunn, Gregory S. Barsh and their collaborators as "Spongiform Degeneration in mahoganoid Mutant Mice."

"Just don’t call them mad mice," pleads Gunn, an assistant professor of genetics in Cornell’s College of Veterinary Medicine who began the research in Barsh’s laboratory at Stanford. "We do see the same kind of tissue degeneration -- with fluid-filled vacuoles, or holes, where the gray matter should be -- in BSE cattle with bovine spongiform encephalopathy and in these mutant mice. But the mice don’t have the same motor coordination problems as mad cows, and the condition is not lethal."



Rather, the mutant mice exhibit little more than a slight tremor when they begin to move, they live a normal life span for their species and are able to reproduce, Gunn says. Nor did the investigators find evidence of misshapen prion proteins (the cause of spongiform encephalopathies such as mad cow and mad elk diseases) in the mice, although they did see damage to the myelin sheaths around nerve cells. Among other distinguishing characteristics of the mutant mice are curly whiskers and slightly curly body hair, as well as the habit of clasping their hind feet together when lifted off the ground. Normal mice tend to splay their legs straight out when they are elevated, Gunn explains.

Furthermore, this form of neurodegeneration is not known to be contagious, Gunn says, noting: "A cat that eats a mahoganoid mutant mouse -- should one escape from the laboratory -- would not get spongiform encephalopathy."

The researchers were looking for effects that might be linked to mutations in pigmentation genes. They knew that a loss of function in the so-called Mahogunin gene causes a partial reduction in the amount of yellow pigment, so that the mice were left with only small patches of yellow hair on mostly black bodies. But they were surprised to learn that a complete loss of function in that gene produced all-black mice with brain neurodegeneration. Linkages between unusual pigmentation and neural defects are not unheard of in the animal world, Gunn adds, citing predominantly white dogs, such as Dalmatians, that sometimes are deaf.

As an animal model, the mahoganoid mutant mice probably will not be useful to study spongiform encephalopathies like mad cow disease, Gunn believes, because rogue prions are not the cause of the mouse condition. But as an example of defective ubiquitination -- a protein-related process involved in many neurodegenerative disorders, including Parkinson’s and Alzheimer’s diseases -- the mahogany-colored mice with spongy brains could have real value, according to the Cornell scientist.

And the mutant mouse probably isn’t patentable because it has a naturally occurring defect that the researchers did not create and because the mice already are commercially available. However, Gunn suggests, further work with the gene responsible for the neurodegenerative condition might result in patent applications.

Gunn credits Cornell undergraduate student Aaron F. Jolly for his research assistance in the study. Jolly is one of eight co-authors of the Science report. The study was supported, in part, by grants from the National Institutes of Health and the American Heart Association.

Roger Segelken | Cornell
Further information:
http://web.vet.cornell.edu/public/BioSci/new/vbs_ld.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>