Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse genetic model for spongiform brain diseases


Cornell geneticist Teresa Gunn displays a mahoganoid mutant mouse, a possible animal model for brain disease in humans.

Some mice with a genetic mutation for mahogany-colored coats also develop spongiform degeneration of brain tissue, similar to mad cow disease. Because of this oddity, the mice could be valuable animal models for human disorders, such as Parkinson’s and Alzheimer’s diseases, according to geneticists at Cornell and Stanford universities.

The surprising discovery in a mouse strain known to geneticists since the 1960s is reported in the latest issue of the journal Science (Jan. 31, 2003) by Teresa M. Gunn, Gregory S. Barsh and their collaborators as "Spongiform Degeneration in mahoganoid Mutant Mice."

"Just don’t call them mad mice," pleads Gunn, an assistant professor of genetics in Cornell’s College of Veterinary Medicine who began the research in Barsh’s laboratory at Stanford. "We do see the same kind of tissue degeneration -- with fluid-filled vacuoles, or holes, where the gray matter should be -- in BSE cattle with bovine spongiform encephalopathy and in these mutant mice. But the mice don’t have the same motor coordination problems as mad cows, and the condition is not lethal."

Rather, the mutant mice exhibit little more than a slight tremor when they begin to move, they live a normal life span for their species and are able to reproduce, Gunn says. Nor did the investigators find evidence of misshapen prion proteins (the cause of spongiform encephalopathies such as mad cow and mad elk diseases) in the mice, although they did see damage to the myelin sheaths around nerve cells. Among other distinguishing characteristics of the mutant mice are curly whiskers and slightly curly body hair, as well as the habit of clasping their hind feet together when lifted off the ground. Normal mice tend to splay their legs straight out when they are elevated, Gunn explains.

Furthermore, this form of neurodegeneration is not known to be contagious, Gunn says, noting: "A cat that eats a mahoganoid mutant mouse -- should one escape from the laboratory -- would not get spongiform encephalopathy."

The researchers were looking for effects that might be linked to mutations in pigmentation genes. They knew that a loss of function in the so-called Mahogunin gene causes a partial reduction in the amount of yellow pigment, so that the mice were left with only small patches of yellow hair on mostly black bodies. But they were surprised to learn that a complete loss of function in that gene produced all-black mice with brain neurodegeneration. Linkages between unusual pigmentation and neural defects are not unheard of in the animal world, Gunn adds, citing predominantly white dogs, such as Dalmatians, that sometimes are deaf.

As an animal model, the mahoganoid mutant mice probably will not be useful to study spongiform encephalopathies like mad cow disease, Gunn believes, because rogue prions are not the cause of the mouse condition. But as an example of defective ubiquitination -- a protein-related process involved in many neurodegenerative disorders, including Parkinson’s and Alzheimer’s diseases -- the mahogany-colored mice with spongy brains could have real value, according to the Cornell scientist.

And the mutant mouse probably isn’t patentable because it has a naturally occurring defect that the researchers did not create and because the mice already are commercially available. However, Gunn suggests, further work with the gene responsible for the neurodegenerative condition might result in patent applications.

Gunn credits Cornell undergraduate student Aaron F. Jolly for his research assistance in the study. Jolly is one of eight co-authors of the Science report. The study was supported, in part, by grants from the National Institutes of Health and the American Heart Association.

Roger Segelken | Cornell
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>