Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse genetic model for spongiform brain diseases

31.01.2003


Cornell geneticist Teresa Gunn displays a mahoganoid mutant mouse, a possible animal model for brain disease in humans.


Some mice with a genetic mutation for mahogany-colored coats also develop spongiform degeneration of brain tissue, similar to mad cow disease. Because of this oddity, the mice could be valuable animal models for human disorders, such as Parkinson’s and Alzheimer’s diseases, according to geneticists at Cornell and Stanford universities.

The surprising discovery in a mouse strain known to geneticists since the 1960s is reported in the latest issue of the journal Science (Jan. 31, 2003) by Teresa M. Gunn, Gregory S. Barsh and their collaborators as "Spongiform Degeneration in mahoganoid Mutant Mice."

"Just don’t call them mad mice," pleads Gunn, an assistant professor of genetics in Cornell’s College of Veterinary Medicine who began the research in Barsh’s laboratory at Stanford. "We do see the same kind of tissue degeneration -- with fluid-filled vacuoles, or holes, where the gray matter should be -- in BSE cattle with bovine spongiform encephalopathy and in these mutant mice. But the mice don’t have the same motor coordination problems as mad cows, and the condition is not lethal."



Rather, the mutant mice exhibit little more than a slight tremor when they begin to move, they live a normal life span for their species and are able to reproduce, Gunn says. Nor did the investigators find evidence of misshapen prion proteins (the cause of spongiform encephalopathies such as mad cow and mad elk diseases) in the mice, although they did see damage to the myelin sheaths around nerve cells. Among other distinguishing characteristics of the mutant mice are curly whiskers and slightly curly body hair, as well as the habit of clasping their hind feet together when lifted off the ground. Normal mice tend to splay their legs straight out when they are elevated, Gunn explains.

Furthermore, this form of neurodegeneration is not known to be contagious, Gunn says, noting: "A cat that eats a mahoganoid mutant mouse -- should one escape from the laboratory -- would not get spongiform encephalopathy."

The researchers were looking for effects that might be linked to mutations in pigmentation genes. They knew that a loss of function in the so-called Mahogunin gene causes a partial reduction in the amount of yellow pigment, so that the mice were left with only small patches of yellow hair on mostly black bodies. But they were surprised to learn that a complete loss of function in that gene produced all-black mice with brain neurodegeneration. Linkages between unusual pigmentation and neural defects are not unheard of in the animal world, Gunn adds, citing predominantly white dogs, such as Dalmatians, that sometimes are deaf.

As an animal model, the mahoganoid mutant mice probably will not be useful to study spongiform encephalopathies like mad cow disease, Gunn believes, because rogue prions are not the cause of the mouse condition. But as an example of defective ubiquitination -- a protein-related process involved in many neurodegenerative disorders, including Parkinson’s and Alzheimer’s diseases -- the mahogany-colored mice with spongy brains could have real value, according to the Cornell scientist.

And the mutant mouse probably isn’t patentable because it has a naturally occurring defect that the researchers did not create and because the mice already are commercially available. However, Gunn suggests, further work with the gene responsible for the neurodegenerative condition might result in patent applications.

Gunn credits Cornell undergraduate student Aaron F. Jolly for his research assistance in the study. Jolly is one of eight co-authors of the Science report. The study was supported, in part, by grants from the National Institutes of Health and the American Heart Association.

Roger Segelken | Cornell
Further information:
http://web.vet.cornell.edu/public/BioSci/new/vbs_ld.html

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>