Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfactant curtails nanotube clumping in water, removing a major barrier to many applications

30.01.2003


Scientists have long touted carbon nanotubes as a futuristic means of delivering drugs, fortifying brittle materials and conducting current in miniaturized circuits. But attempts to introduce actual nanotubes into these roles have often been stopped in their tracks by the slender filaments’ stubborn and unhelpful tendency to clump together in solution.



Now scientists at the University of Pennsylvania have found that a readily available chemical, a surfactant called sodium dodecylbenzene sulfonate (NaDDBS), disperses nanotubes in water with remarkable efficiency. The discovery, described in a paper published this month in the journal Nanoletters, represents an important step towards wider applications of nanotubes.

"Scientists have suggested many possible applications for carbon nanotubes, but tube aggregation in solution has obstructed progress," said lead author Mohammad F. Islam, a postdoctoral researcher in Penn’s Department of Physics and Astronomy. "This new approach improves our ability to manipulate single tubes. Single nanotubes can now participate in controlled self-assembly, form fibers and composites, and serve as microfluidic sensors in water."


When Islam and senior author Arjun G. Yodh added NaDDBS to a cocktail of water and nanotubes, the surfactant adhered weakly to the nanotubes, preventing the tubes from clinging to one another. Islam, Yodh and colleagues determined that NaDDBS increased the concentration of single carbon nanotubes in water up to 100-fold. Even at high concentrations, roughly 63 percent of nanotubes in aqueous solution remained unbound.

"Sodium dodecylbenzene sulfonate is pretty non-invasive, so we expect that the nanotubes’ unique electronic, thermal, optical and mechanical properties will be preserved in suspension," said Yodh, a professor of physics. "An added bonus of our complete solubilization approach is that it is gentle. Mixing this particular surfactant with nanotubes and water in a low-power, high-frequency sonicator, as we did, resulted in very little breakage of the nanotubes, which has been a problem with other treatments."

Islam, Yodh and colleagues also found that NaDDBS-treated nanotubes resisted re-aggregation for as long as three months, a feat other surfactants could not match.

Carbon nanotubes tend to cling together because they are subject to substantial van der Waals attractions. While researchers have explored numerous surfactants to counter this attraction, Islam and Yodh suggest that NaDDBS’s benzene ring, together with its long alkane tail and charge group, conspire to produce an unusual molecular arrangement on the nanotube surface that reduces aggregation.

Islam and Yodh conducted their studies of NaDDBS in aqueous solutions. Unlike various organic chemicals used as nanotube solvents, water is environmentally benign and compatible with biomedical applications.

Islam and Yodh were joined on the Nanoletters paper by co-authors Enrique Rojas, D.M. Bergey and Alan T. "Charlie" Johnson, all of Penn’s Department of Physics and Astronomy and Laboratory for Research on the Structure of Matter. The research was funded by the National Science Foundation, NASA and the Petroleum Research Fund.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>