Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfactant curtails nanotube clumping in water, removing a major barrier to many applications

30.01.2003


Scientists have long touted carbon nanotubes as a futuristic means of delivering drugs, fortifying brittle materials and conducting current in miniaturized circuits. But attempts to introduce actual nanotubes into these roles have often been stopped in their tracks by the slender filaments’ stubborn and unhelpful tendency to clump together in solution.



Now scientists at the University of Pennsylvania have found that a readily available chemical, a surfactant called sodium dodecylbenzene sulfonate (NaDDBS), disperses nanotubes in water with remarkable efficiency. The discovery, described in a paper published this month in the journal Nanoletters, represents an important step towards wider applications of nanotubes.

"Scientists have suggested many possible applications for carbon nanotubes, but tube aggregation in solution has obstructed progress," said lead author Mohammad F. Islam, a postdoctoral researcher in Penn’s Department of Physics and Astronomy. "This new approach improves our ability to manipulate single tubes. Single nanotubes can now participate in controlled self-assembly, form fibers and composites, and serve as microfluidic sensors in water."


When Islam and senior author Arjun G. Yodh added NaDDBS to a cocktail of water and nanotubes, the surfactant adhered weakly to the nanotubes, preventing the tubes from clinging to one another. Islam, Yodh and colleagues determined that NaDDBS increased the concentration of single carbon nanotubes in water up to 100-fold. Even at high concentrations, roughly 63 percent of nanotubes in aqueous solution remained unbound.

"Sodium dodecylbenzene sulfonate is pretty non-invasive, so we expect that the nanotubes’ unique electronic, thermal, optical and mechanical properties will be preserved in suspension," said Yodh, a professor of physics. "An added bonus of our complete solubilization approach is that it is gentle. Mixing this particular surfactant with nanotubes and water in a low-power, high-frequency sonicator, as we did, resulted in very little breakage of the nanotubes, which has been a problem with other treatments."

Islam, Yodh and colleagues also found that NaDDBS-treated nanotubes resisted re-aggregation for as long as three months, a feat other surfactants could not match.

Carbon nanotubes tend to cling together because they are subject to substantial van der Waals attractions. While researchers have explored numerous surfactants to counter this attraction, Islam and Yodh suggest that NaDDBS’s benzene ring, together with its long alkane tail and charge group, conspire to produce an unusual molecular arrangement on the nanotube surface that reduces aggregation.

Islam and Yodh conducted their studies of NaDDBS in aqueous solutions. Unlike various organic chemicals used as nanotube solvents, water is environmentally benign and compatible with biomedical applications.

Islam and Yodh were joined on the Nanoletters paper by co-authors Enrique Rojas, D.M. Bergey and Alan T. "Charlie" Johnson, all of Penn’s Department of Physics and Astronomy and Laboratory for Research on the Structure of Matter. The research was funded by the National Science Foundation, NASA and the Petroleum Research Fund.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>