Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfactant curtails nanotube clumping in water, removing a major barrier to many applications

30.01.2003


Scientists have long touted carbon nanotubes as a futuristic means of delivering drugs, fortifying brittle materials and conducting current in miniaturized circuits. But attempts to introduce actual nanotubes into these roles have often been stopped in their tracks by the slender filaments’ stubborn and unhelpful tendency to clump together in solution.



Now scientists at the University of Pennsylvania have found that a readily available chemical, a surfactant called sodium dodecylbenzene sulfonate (NaDDBS), disperses nanotubes in water with remarkable efficiency. The discovery, described in a paper published this month in the journal Nanoletters, represents an important step towards wider applications of nanotubes.

"Scientists have suggested many possible applications for carbon nanotubes, but tube aggregation in solution has obstructed progress," said lead author Mohammad F. Islam, a postdoctoral researcher in Penn’s Department of Physics and Astronomy. "This new approach improves our ability to manipulate single tubes. Single nanotubes can now participate in controlled self-assembly, form fibers and composites, and serve as microfluidic sensors in water."


When Islam and senior author Arjun G. Yodh added NaDDBS to a cocktail of water and nanotubes, the surfactant adhered weakly to the nanotubes, preventing the tubes from clinging to one another. Islam, Yodh and colleagues determined that NaDDBS increased the concentration of single carbon nanotubes in water up to 100-fold. Even at high concentrations, roughly 63 percent of nanotubes in aqueous solution remained unbound.

"Sodium dodecylbenzene sulfonate is pretty non-invasive, so we expect that the nanotubes’ unique electronic, thermal, optical and mechanical properties will be preserved in suspension," said Yodh, a professor of physics. "An added bonus of our complete solubilization approach is that it is gentle. Mixing this particular surfactant with nanotubes and water in a low-power, high-frequency sonicator, as we did, resulted in very little breakage of the nanotubes, which has been a problem with other treatments."

Islam, Yodh and colleagues also found that NaDDBS-treated nanotubes resisted re-aggregation for as long as three months, a feat other surfactants could not match.

Carbon nanotubes tend to cling together because they are subject to substantial van der Waals attractions. While researchers have explored numerous surfactants to counter this attraction, Islam and Yodh suggest that NaDDBS’s benzene ring, together with its long alkane tail and charge group, conspire to produce an unusual molecular arrangement on the nanotube surface that reduces aggregation.

Islam and Yodh conducted their studies of NaDDBS in aqueous solutions. Unlike various organic chemicals used as nanotube solvents, water is environmentally benign and compatible with biomedical applications.

Islam and Yodh were joined on the Nanoletters paper by co-authors Enrique Rojas, D.M. Bergey and Alan T. "Charlie" Johnson, all of Penn’s Department of Physics and Astronomy and Laboratory for Research on the Structure of Matter. The research was funded by the National Science Foundation, NASA and the Petroleum Research Fund.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>