Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals how strep bacterium evades immune system

28.01.2003


Like a well-trained soldier with honed survival skills, the common bacterium, Group A Streptococcus (GAS), sometimes can endure battle with our inborn (innate) immune system and cause widespread disease. By investigating the ability of combat-ready white blood cells (WBCs) to ingest and kill GAS, researchers have discovered new insights into how this disease-causing bacteria can evade destruction by the immune system. The research is being published this week in the Online Early Edition of the Proceedings of the National Academy of Sciences,USA at http://www.pnas.org/papbyrecent.shtml.



Frank DeLeo, Ph.D., tenure-track investigator in the Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), Rocky Mountain Laboratories in Hamilton, MT, directed the study. "This is the first genome-scale look at GAS genes that are differentially expressed during interaction with the human innate immune system," he says. "We are excited about our findings and how they may lead to further investigation of therapeutics that can protect us from this major human pathogen." According to Dr. DeLeo, this type of study is the next logical application of microbial genomics.

An estimated 15 million new cases of noninvasive GAS infections occur in the United States each year, with a direct health care cost of $2 billion. The noninvasive and milder types of infection, primarily strep throat and skin infections, occur mostly in children between the ages of 5 and 14 years old. Elementary school-aged children are at highest risk for noninvasive disease. In 2000, the reported incidence of the more serious invasive GAS disease, which includes streptococcal toxic shock syndrome (STSS), cellulitis, pneumonia, bacteremia and necrotizing fasciitis (flesh-eating disease), was 8,800 cases and 1,000 deaths. The elderly, immunosuppressed, persons with chronic cardiac or respiratory disease or diabetes, African Americans, American Indians and persons with skin lesions (for example, children with chickenpox and intravenous drug users) have increased risk for GAS invasive disease.


Some GAS infections may be asymptomatic, and if untreated, can lead to life-threatening infections. With an early diagnosis, however, noninvasive GAS can be successfully treated with antibiotics. On the other hand, it is much more difficult to treat invasive GAS disease, and these infections are associated with high morbidity and mortality.

By examining the interaction between disease-fighting human WBCs and a type of GAS that causes abundant disease in North America and Western Europe, the NIAID scientists have discovered how GAS elicits its own genome-wide protective response to evade destruction by the human immune system. The two opponents, WBCs and GAS, met face to face in experiments conducted by Dr. DeLeo, James Musser, M.D., Ph.D., chief of the Laboratory of Human Bacterial Pathogenesis, and their colleagues.

For their study, the researchers used human WBCs called polymorphonuclear leukocytes (PMNs), an essential component of the immune system’s defense against foreign invaders. These microbe-eating cells are in a class of cells termed phagocytes, which stand ready to seek and destroy foreign substances such as bacteria. During battle with most foreign microbes, PMNs successfully "eat" invading predators, a scientific process called phagocytosis. After microbes are engulfed, PMNs produce deadly oxygen radicals, such as hydrogen peroxide and hypoclorous acid (the active ingredient in household bleach), and release toxic granules to kill the enemy. Normally, this defense tactic can defeat most foreign invaders, but it is ineffective against highly evolved GAS bacterium.

The scientists examined how PMNs from healthy individuals ingest and kill GAS and tested their hypothesis that GAS revs up or slows down the production of specific factors to evade the innate immune system. The study indicates that GAS becomes more resilient to ingestion and killing by PMNs over time or it produces factors that alter normal PMN function. This resiliency is demonstrated by the increased expression of various GAS genes associated with the bacteria’s virulence and cell wall repair as well as genes that encode proteins likely to promote immune evasion.

The study’s lead author, Jovanka Voyich, Ph.D., states, "Our study identifies potential vaccine candidates and new targets for therapy interventions designed to control GAS infections."

The scientists hope that this new knowledge in combination with their earlier GAS research will lead to further investigation of how GAS evades destruction by our innate immune system and will inevitably spur the discovery of vaccine therapies and antibiotics that can prevent and treat invasive and noninvasive strains of this bacterium.


NIAID is a component of the National Institutes of Health (NIH), an agency of the Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Walter Mitton | EurekAlert!
Further information:
http://www.pnas.org/papbyrecent.shtml

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>