Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover "time for bed" molecules

23.01.2003

Animals lacking molecules called cryptochromes have abnormal sleeping patterns because their internal biorhythms are disrupted. New research from scientists at Stanford University, the University of North Carolina and SRI International published in the open access journal, BMC Neuroscience shows that mice lacking these molecules also respond differently to sleep deprivation. This suggests that cryptochromes are also involved in sleep homeostasis, the process by which we feel tired after we have been awake for a long time.

Sleep is regulated in mammals in two ways. Firstly, it is controlled by an internal body clock, which in humans makes us feel tired at night and awake during the day. Secondly there is a tendency for animals deprived of sleep to feel tired and sleep longer following prolonged wakefulness. This is due to a process called sleep homeostasis, which tries to maintain a balance between time spent awake and time spent asleep.

Molecules known as cryptochromes are known to be involved in the generation of the natural rhythms of the body clock, but it is not clear if they are involved in the regulation of sleep after a period of wakefulness. Stanford scientists Dale Edgar, Jonathan Wisor and colleagues have now investigated the regulation of sleep in mice that are unable to produce functional cryptochrome molecules.

Mice are a nocturnal species that tend to sleep during the day and be awake at night. Mutant mice that lack the cryptochrome genes do not show a preference for sleep at night, which suggests that their body clocks are broken. To investigate the response of these mice to sleep deprivation the researchers continually woke mice up for six hours with gentle handling or by the introduction of an unfamiliar object into their cage.

The response of the mutant mice to being kept awake was quite different to normal mice. The researchers were able to measure both the intensity and length of non-REM sleep following sleep deprivation by measuring brain waves in a technique known as electroencephalography. After six hours of sleep deprivation normal mice showed a characteristic increase in the duration of sleep as regulated by homeostasis. However, mutant mice lacking cryptochromes did not exhibit increases in the duration of non-REM sleep following sleep deprivation.

These results led researchers to conclude that mice lacking cryptochromes can be used a model organism to gain a deeper understanding about the ways in which sleep is regulated. Further understanding of the process of sleep regulation is exciting as the disruption of normal sleeping patterns is a common symptom in a variety of illnesses ranging from arthritis to Parkinson’s disease as well a being very common in sufferers of depression.

Gordon Fletcher | BioMed Central
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/content/pdf/1471-2202-3-20.pdf

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>