Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover "time for bed" molecules

23.01.2003

Animals lacking molecules called cryptochromes have abnormal sleeping patterns because their internal biorhythms are disrupted. New research from scientists at Stanford University, the University of North Carolina and SRI International published in the open access journal, BMC Neuroscience shows that mice lacking these molecules also respond differently to sleep deprivation. This suggests that cryptochromes are also involved in sleep homeostasis, the process by which we feel tired after we have been awake for a long time.

Sleep is regulated in mammals in two ways. Firstly, it is controlled by an internal body clock, which in humans makes us feel tired at night and awake during the day. Secondly there is a tendency for animals deprived of sleep to feel tired and sleep longer following prolonged wakefulness. This is due to a process called sleep homeostasis, which tries to maintain a balance between time spent awake and time spent asleep.

Molecules known as cryptochromes are known to be involved in the generation of the natural rhythms of the body clock, but it is not clear if they are involved in the regulation of sleep after a period of wakefulness. Stanford scientists Dale Edgar, Jonathan Wisor and colleagues have now investigated the regulation of sleep in mice that are unable to produce functional cryptochrome molecules.

Mice are a nocturnal species that tend to sleep during the day and be awake at night. Mutant mice that lack the cryptochrome genes do not show a preference for sleep at night, which suggests that their body clocks are broken. To investigate the response of these mice to sleep deprivation the researchers continually woke mice up for six hours with gentle handling or by the introduction of an unfamiliar object into their cage.

The response of the mutant mice to being kept awake was quite different to normal mice. The researchers were able to measure both the intensity and length of non-REM sleep following sleep deprivation by measuring brain waves in a technique known as electroencephalography. After six hours of sleep deprivation normal mice showed a characteristic increase in the duration of sleep as regulated by homeostasis. However, mutant mice lacking cryptochromes did not exhibit increases in the duration of non-REM sleep following sleep deprivation.

These results led researchers to conclude that mice lacking cryptochromes can be used a model organism to gain a deeper understanding about the ways in which sleep is regulated. Further understanding of the process of sleep regulation is exciting as the disruption of normal sleeping patterns is a common symptom in a variety of illnesses ranging from arthritis to Parkinson’s disease as well a being very common in sufferers of depression.

Gordon Fletcher | BioMed Central
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/content/pdf/1471-2202-3-20.pdf

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>