Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover "time for bed" molecules

23.01.2003

Animals lacking molecules called cryptochromes have abnormal sleeping patterns because their internal biorhythms are disrupted. New research from scientists at Stanford University, the University of North Carolina and SRI International published in the open access journal, BMC Neuroscience shows that mice lacking these molecules also respond differently to sleep deprivation. This suggests that cryptochromes are also involved in sleep homeostasis, the process by which we feel tired after we have been awake for a long time.

Sleep is regulated in mammals in two ways. Firstly, it is controlled by an internal body clock, which in humans makes us feel tired at night and awake during the day. Secondly there is a tendency for animals deprived of sleep to feel tired and sleep longer following prolonged wakefulness. This is due to a process called sleep homeostasis, which tries to maintain a balance between time spent awake and time spent asleep.

Molecules known as cryptochromes are known to be involved in the generation of the natural rhythms of the body clock, but it is not clear if they are involved in the regulation of sleep after a period of wakefulness. Stanford scientists Dale Edgar, Jonathan Wisor and colleagues have now investigated the regulation of sleep in mice that are unable to produce functional cryptochrome molecules.

Mice are a nocturnal species that tend to sleep during the day and be awake at night. Mutant mice that lack the cryptochrome genes do not show a preference for sleep at night, which suggests that their body clocks are broken. To investigate the response of these mice to sleep deprivation the researchers continually woke mice up for six hours with gentle handling or by the introduction of an unfamiliar object into their cage.

The response of the mutant mice to being kept awake was quite different to normal mice. The researchers were able to measure both the intensity and length of non-REM sleep following sleep deprivation by measuring brain waves in a technique known as electroencephalography. After six hours of sleep deprivation normal mice showed a characteristic increase in the duration of sleep as regulated by homeostasis. However, mutant mice lacking cryptochromes did not exhibit increases in the duration of non-REM sleep following sleep deprivation.

These results led researchers to conclude that mice lacking cryptochromes can be used a model organism to gain a deeper understanding about the ways in which sleep is regulated. Further understanding of the process of sleep regulation is exciting as the disruption of normal sleeping patterns is a common symptom in a variety of illnesses ranging from arthritis to Parkinson’s disease as well a being very common in sufferers of depression.

Gordon Fletcher | BioMed Central
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/content/pdf/1471-2202-3-20.pdf

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>