Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover "time for bed" molecules

23.01.2003

Animals lacking molecules called cryptochromes have abnormal sleeping patterns because their internal biorhythms are disrupted. New research from scientists at Stanford University, the University of North Carolina and SRI International published in the open access journal, BMC Neuroscience shows that mice lacking these molecules also respond differently to sleep deprivation. This suggests that cryptochromes are also involved in sleep homeostasis, the process by which we feel tired after we have been awake for a long time.

Sleep is regulated in mammals in two ways. Firstly, it is controlled by an internal body clock, which in humans makes us feel tired at night and awake during the day. Secondly there is a tendency for animals deprived of sleep to feel tired and sleep longer following prolonged wakefulness. This is due to a process called sleep homeostasis, which tries to maintain a balance between time spent awake and time spent asleep.

Molecules known as cryptochromes are known to be involved in the generation of the natural rhythms of the body clock, but it is not clear if they are involved in the regulation of sleep after a period of wakefulness. Stanford scientists Dale Edgar, Jonathan Wisor and colleagues have now investigated the regulation of sleep in mice that are unable to produce functional cryptochrome molecules.

Mice are a nocturnal species that tend to sleep during the day and be awake at night. Mutant mice that lack the cryptochrome genes do not show a preference for sleep at night, which suggests that their body clocks are broken. To investigate the response of these mice to sleep deprivation the researchers continually woke mice up for six hours with gentle handling or by the introduction of an unfamiliar object into their cage.

The response of the mutant mice to being kept awake was quite different to normal mice. The researchers were able to measure both the intensity and length of non-REM sleep following sleep deprivation by measuring brain waves in a technique known as electroencephalography. After six hours of sleep deprivation normal mice showed a characteristic increase in the duration of sleep as regulated by homeostasis. However, mutant mice lacking cryptochromes did not exhibit increases in the duration of non-REM sleep following sleep deprivation.

These results led researchers to conclude that mice lacking cryptochromes can be used a model organism to gain a deeper understanding about the ways in which sleep is regulated. Further understanding of the process of sleep regulation is exciting as the disruption of normal sleeping patterns is a common symptom in a variety of illnesses ranging from arthritis to Parkinson’s disease as well a being very common in sufferers of depression.

Gordon Fletcher | BioMed Central
Further information:
http://www.biomedcentral.com
http://www.biomedcentral.com/content/pdf/1471-2202-3-20.pdf

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>