Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Monkeys Show Sophisticated Learning Abilities


The scientists have not yet found the limits of the monkeys’ learning capacity

Psychologists have found evidence that monkeys have sophisticated abilities to acquire and apply knowledge using some of the same strategies as do humans. Specifically, the researchers have discovered that rhesus monkeys can learn the correct order of arbitrary sets of images and can apply that knowledge to answer new questions about that order.

Not only can the monkeys choose which image came first in the same list, but they can also compare the order of pictures that came from different lists, found the researchers. The scientists said they have not yet found the limits of the monkeys’ learning capacity.

The researchers -- Herbert Terrace of Columbia University, Lisa Son of Barnard College and Elizabeth Brannon of Duke University -- reported their findings in an article in the January 2003 Psychological Science. Son and Brannon were graduate students at Columbia when the study was conducted. The scientists’ research was sponsored by the National Institute of Mental Health and the National Science Foundation. Brannon is an assistant professor in the Department of Psychological and Brain Sciences and a member of Duke’s Center for Cognitive Neuroscience.

"While quite a lot of research has been done in monkeys addressing specific cognitive abilities such as numerical cognition or concept formation, very little has been done up to this point on the development of expertise," said Brannon.

To explore how monkeys learn, the researchers decided to teach four rhesus macaque monkeys -- named Benedict, Macduff, Oberon and Rosencrantz -- to distinguish the order of images displayed on a video touch screen. In the experiments, the monkeys were first presented with sets of images such as animals, people, scenery, cars and bridges. In return for banana-pellet rewards, the monkeys were then required to touch the images in a particular arbitrary but consistent order. The pictures were presented in random positions on the screen in each trial but the monkeys needed to ignore their physical locations and touch them in the correct order. When the researchers began their study, they gave the monkeys three- and four-image lists, and once the monkeys showed proficiency in these lists, graduated to seven-image lists.

Finally, the monkeys were asked to order pairs of images originally learned in the same list, and also pairs that contained items from two different lists.

The monkeys showed very high abilities to learn and manage four, seven-item lists, found the researchers. In addition, the monkeys were able to order pairs that had come from the same list and pairs that had come from different lists with similar high accuracy, responding correctly to 94 percent and 91 percent of these trials respectively. Such high performance indicates that the researchers have not yet reached the limits of the animals’ abilities, said Brannon.

"It was only an initial guess on our part that seven-item lists would be particularly challenging, but it didn’t turn out be all that challenging, and it seems possible that we could test longer lists."

Importantly, the researchers observed that the monkeys’ learning process exhibited the same basic properties as human learning.

"For example, we found that the monkeys were learning each additional new list much quicker than they learned their first list within any given list length," said Brannon. "So, they weren’t just learning about the particular photographs within a sequence; they were learning a strategy of how to learn. And that’s what we call expertise." Also, said Brannon, in the paired imaging tests, the monkeys showed the ability to apply their knowledge in a flexible way as humans do.

"In learning the lists, they had not learned anything about the relationship between picture A from list 1 and picture C from list 4," said Brannon. "And yet, their performance was pretty much indistinguishable on pairs that were within one list, versus pairs that were between lists.

"I was very surprised that there was no significant difference in accuracy between these two types of comparisons -- that the animals really treated them as the same problem," said Brannon. "They showed logical acquisition of an incredible amount of flexible knowledge, which is the hallmark of what in humans is called declarative knowledge."

Finally, the researchers found two distinctive properties -- called "distance" effects and "magnitude" effects -- in the monkeys’ responses that mimicked human responses to memory tasks and number discrimination tasks. In the distance effect, the monkeys’ responses were slower when two images were close together in the original list (e.g., A and B) and faster when the images were farther apart in the original list (e.g., A and D).

"Another example of a distance effect is if you’re comparing two line lengths," said Brannon. "If two lines are very similar to each other, it’s a very difficult discrimination. So, your accuracy is lower and your reaction time is slower. If, on the other hand, you’re comparing a very short line and a very long line, it’s a much simpler discrimination. And the distance is bigger and your accuracy is better and your reaction time is much faster."

Similarly, the magnitude effect is an increase in time and decrease in accuracy when the initial item in a comparison is farther down in the original list. In analyzing the results, the scientists found such an effect in the monkeys.

"These effects tell us that there seems to be some kind of common code in both monkeys and humans for distinguishing order -- perhaps some sort of spatial map that represents the essence of order," said Brannon. According to Brannon, the researchers’ findings offer important lessons to guide future studies of primate cognition.

"For one thing, we don’t typically give animals these kinds of complicated sequences that involve many responses within a given trial," she said. "And now when we do, we see the development of expertise.

"Also, when we measure cognitive capacities in adult humans, it is in the context of a huge amount of life experience. Our experiments took two years, and although that might seem like a long time, it doesn’t compare to the kind of experience that adult humans have had.

"So, when we’re trying to understand the limits of cognitive capacities in animals, it may not be fair to compare these naïve animals to humans."

For additional information, contact:
Dennis Meredith | phone: (919) 681-8054 | email:

Dennis Meredith | Duke News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>