Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A multitude of exciting new applications in chemistry

22.01.2003


Scientists at the University of Leicester are on the way to solving a problem that has long beset chemists trying to study chemical reactions.



To establish reaction mechanisms the observation of reaction intermediates is vital, but they are incredibly short-lived under normal conditions, and therefore difficult to detect. Freezing the reaction – known as matrix isolation - has been employed for many years, but produces rigid solids in which molecules are trapped and therefore motionless.

Chemistry revolves around the making and breaking of chemical bonds. Molecules must correctly orient themselves with respect to one another so that they can react, and as reaction progresses various chemical intermediates, such as free radicals, may be formed.


At the University of Leicester Department of Chemistry a research team led by Drs Andy Ellis and Martyn Wheeler is using an exotic new solvent - liquid helium nanodroplets (LHNDs) - as an ultra-low temperature nano-laboratory.

LHNDs have some extraordinary properties. Composed of several thousand helium atoms, they only exist at a temperature close to absolute zero (0.2 K). In addition they are superfluid, which means that molecules trapped within them can still move around.

This winning combination of exceedingly low temperature with molecule mobility opens up a multitude of exciting new applications in chemistry.

Molecules that disappear in an instant under normal chemical conditions, such as free radicals, can be studied at leisure in LHNDs.

It should even be possible to bring together several free radicals to form stable complexes, a concept previously unthinkable in experimental chemistry.

Dr Ellis commented: “This is an exciting and challenging research program at the cutting edge of modern chemistry. Dr Wheeler and I will be constructing major state-of-the art apparatus which will open up new frontiers in the study of free radical chemistry and dynamics.”

Barbara Whiteman
email: ara@le.ac.uk

Barbara Whiteman | Alphagalileo

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>