Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A multitude of exciting new applications in chemistry

22.01.2003


Scientists at the University of Leicester are on the way to solving a problem that has long beset chemists trying to study chemical reactions.



To establish reaction mechanisms the observation of reaction intermediates is vital, but they are incredibly short-lived under normal conditions, and therefore difficult to detect. Freezing the reaction – known as matrix isolation - has been employed for many years, but produces rigid solids in which molecules are trapped and therefore motionless.

Chemistry revolves around the making and breaking of chemical bonds. Molecules must correctly orient themselves with respect to one another so that they can react, and as reaction progresses various chemical intermediates, such as free radicals, may be formed.


At the University of Leicester Department of Chemistry a research team led by Drs Andy Ellis and Martyn Wheeler is using an exotic new solvent - liquid helium nanodroplets (LHNDs) - as an ultra-low temperature nano-laboratory.

LHNDs have some extraordinary properties. Composed of several thousand helium atoms, they only exist at a temperature close to absolute zero (0.2 K). In addition they are superfluid, which means that molecules trapped within them can still move around.

This winning combination of exceedingly low temperature with molecule mobility opens up a multitude of exciting new applications in chemistry.

Molecules that disappear in an instant under normal chemical conditions, such as free radicals, can be studied at leisure in LHNDs.

It should even be possible to bring together several free radicals to form stable complexes, a concept previously unthinkable in experimental chemistry.

Dr Ellis commented: “This is an exciting and challenging research program at the cutting edge of modern chemistry. Dr Wheeler and I will be constructing major state-of-the art apparatus which will open up new frontiers in the study of free radical chemistry and dynamics.”

Barbara Whiteman
email: ara@le.ac.uk

Barbara Whiteman | Alphagalileo

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>