Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Scientists Discover Rich Medical Drug Resource in Deep Ocean Sediments

20.01.2003


Promising cancer-fighting candidates emerge from tropical ocean ‘mud’


Twelve strains of Salinospora, a new natural marine microbe discovered by the Center for Marine Biotechnology and Biomedicine at Scripps



Although the oceans cover 70 percent of the planet’s surface, much of their biomedical potential has gone largely unexplored. Until now.

A group of researchers at Scripps Institution of Oceanography at the University of California, San Diego, have for the first time shown that sediments in the deep ocean are a significant biomedical resource for microbes that produce antibiotic molecules.


In a series of two papers, a group led by William Fenical, director of the Center for Marine Biotechnology and Biomedicine (CMBB) at Scripps Institution, has reported the discovery of a novel group of bacteria found to produce molecules with potential in the treatment of infectious diseases and cancer.

“The average person thinks of the bottom of the ocean as a dark, cold, and nasty place that is irrelevant, but we’ve shown that this environment may be a huge resource for new antibiotics and drugs for the treatment of cancer,” said Fenical.

The first paper, published in the October 2002 issue of Applied and Environmental Microbiology, highlights the discovery of new bacteria, called actinomycetes, from ocean sediments. For more than 45 years, terrestrial actinomycetes were the foundation of the pharmaceutical industry because of their ability to produce natural antibiotics, including important drugs such as streptomycin, actinomycin, and vancomycin. The data from this paper provide the first conclusive evidence of the widespread occurrence of indigenous actinomycete populations in marine sediments.

The second paper, published in the Jan. 20, 2003, issue of the international edition of the chemistry journal Angewandte Chemie, identifies the structure of a new natural product, which Fenical’s group has named Salinosporamide A, from this new bacterial resource. The new compound is a potent inhibitor of cancer growth, including human colon carcinoma, non-small cell lung cancer, and, most effectively, breast cancer. January’s report cracks the door open for a line of similar discoveries from the recently discovered Salinospora genus.

“The second paper shows the potential for the production of materials that are highly biologically active and very chemically unique. This is likely to be the tip of the iceberg of diverse chemical formulas that are out there,” said Fenical.

Although more than 100 drugs today exist from terrestrial microorganisms, including penicillin, arguably the most important drug in medicine, the potential from land-based microbial sources began dwindling nearly 10 years ago. Pharmaceutical investigators searched high and low around the globe for new terrestrial, drug-producing microbes, but with diminishing payback. According to Fenical, when considering the ever-increasing resistance of bacteria to existing antibiotics, the need to make new discoveries becomes essential.

Surprisingly, the oceans, with some of the most diverse ecosystems on the planet, were largely ignored as a potential source for actinomycete bacteria. Given this omission, it was natural for Fenical’s group at the Scripps CMBB to initiate studies of marine environments for new microorganisms important in pharmaceutical discovery.

His group developed new methods and tools for obtaining a variety of ocean sediments, including a miniaturized sampling device that efficiently captures samples from the deep ocean. They derived bottom muds from more than 1,000 meters deep from the Atlantic and Pacific Oceans, the Red Sea, and the Gulf of California.

They also developed new methods for sifting through these samples (which contain roughly one billion microorganisms per cubic centimeter), culturing the microorganisms, identifying them by genetic methods, and screening their metabolic products for anticancer and antibiotic properties.

By genetic and culture analysis, Fenical’s group discovered the new genus Salinospora, a type of actinomycete bacteria found in tropical and subtropical oceans, but never seen before on land.

The results from their biomedical studies were extraordinarily positive. Of 100 strains of these organisms tested, 80 percent produced molecules that inhibit cancer cell growth. Roughly 35 percent revealed the ability to kill pathogenic bacteria and fungi. Based on the worldwide distribution of Salinospora, Fenical estimates that many thousands of strains will be available.

“I would even go as far as to say that never before has this level of biological activity been observed within a single group of organisms,” said Fenical.

These discoveries have been patented by the University of California and licensed to Nereus Pharmaceuticals Inc. for subsequent development. Nereus is a four-year-old biotech company in San Diego, Calif. dedicated to the development of new drugs from this new source for drug discovery.

“These extraordinary marine discoveries by Scripps Institution, coupled with their industrialization by Nereus Pharmaceuticals, could provide the next great source of drug discovery for the pharmaceutical industry,” said Kobi Sethna, president and CEO of Nereus Pharmaceuticals.

“These discoveries speak to the future of antibiotic discovery,” said Fenical. “They point to the fact that the ocean is an incredibly exciting new microbial resource. They indicate how little we know, and they demonstrate how much we need to invest in further exploration of the oceans.”

In addition to Fenical, coauthors on the papers include Tracy Mincer, Paul Jensen, Christopher Kauffman, Robert Feling, and Greg Buchanan.

Funding for the studies was provided by the National Science Foundation; the National Cancer Institute of the National Institutes of Health; the University of California BioSTAR project; and the Khaled Bin Sultan Living Oceans Foundation.

Mario Aguilera | EurekAlert!
Further information:
http://cmbb.ucsd.edu/
http://scrippsnews.ucsd.edu/pressreleases/fenical_salinospora.html

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>