Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant agriculture: 50 million years of success

20.01.2003


Fungus-growing ants practice agriculture and have been doing so for the past 50 million years according to research published in the Jan. 17 issue of Science. These ants not only grow fungus gardens underground for food but also have adapted to handling parasitic "weeds" that infect their crops.

The team of scientists who collaborated on this analysis includes Ted Schultz of the Smithsonian’s National Museum of Natural History, Bess Wong of the Smithsonian Tropical Research Institute, Cameron Currie and Alison Stuart of the University of Kansas, Stephen Rehner of the U.S. Department of Agriculture, Ulrich Mueller of the University of Texas at Austin, Gi-Ho Sung and Joseph Spatafora of Oregon State University, and Neil Strauss of the University of Toronto.

"The ants, garden fungi, and weeds have all been co-evolving since ant agriculture first got started -- that’s around 50 million years of symbiosis," said Dr. Ted Schultz, research entomologist in the Entomology Section of the Smithsonian’s National Museum of Natural History.



By studying DNA sequences from ants, garden fungi and fungal weeds, the research team was able to peer millions of years into the past to see how this co-evolutionary system evolved. The researchers learned that the ants, their garden fungi and the parasitic fungal weeds have been living in a co-evolved, complex system for a very long time, probably 50 million years or longer. During that time, they have been locked in a never-ending evolutionary "arms race," in which the ants and garden fungi are perpetually evolving new ways to control the parasitic fungal weeds, and the weeds are perpetually developing new ways to continue to infect fungus gardens.

There is a fourth factor in the ant colonies, a kind of bacteria that the ants cultivate on the outsides of their bodies. These bacteria produce an antibiotic that specifically suppresses the growth of the weed fungi, and the ants use this antibiotic to keep their gardens healthy.

"We suspect that it’s going to turn out that this antibiotic use also goes back to the beginning of ant agriculture," said Schultz.

Past work by researchers established phylogenies (evolutionary histories) for the ants and their cultivated fungi, and it also established that the ant gardens almost always contain weed molds in the genus "Escovopsis," which are found nowhere else in nature -- only in ant gardens. One of the new findings in this research paper is that the scientists now have a phylogeny for the weed fungi, an association that appears to be very ancient.

The collaboration that produced this work is supported by a five-year National Science Foundation special program (Integrated Research Challenges in Environmental Biology) grant, and the Smithsonian Institution is the designated permanent repository for all of the project’s ant, fungal, and bacterial specimens, preserved both for morphological and molecular study. The museum has set up an archival liquid N2 DNA repository for the molecular collections generated by the study.

"The Smithsonian’s repository of ant, fungal and bacterial specimens is an extremely important resource because most of these organisms have never been collected before," said Schultz. "Ant agriculture has become a model system that will be studied for decades or even centuries into the future -- and the Smithsonian’s morphological and DNA specimen collections will be the source of the data for many of those studies."

The Entomology Section deals with insects and their relatives, an immense assemblage comprising about 95 percent of the described animal species of the world. Scientific research by staff concentrates on basic taxonomy and life history, but may include studies of population biology, biogeography, ecology, behavior and invasive species. The Smithsonian’s National Entomological Collection harbors some 35 million entomological specimens, and is essential to researchers in the United States and throughout the world.


The National Museum of Natural History, located at 10th Street and Constitution Avenue N.W., welcomed more than 6 million people during the year 2002, making it the most visited natural history museum in the world. Opened in 1910, the Museum is dedicated to maintaining and preserving the world’s most extensive collection of natural history specimens and human artifacts. It also fosters critical scientific research as well as educational programs and exhibitions that present the work of its scientists and curators to the public. The Museum is part of the Smithsonian Institution, the world’s largest museum and research complex. The Smithsonian’s National Museum of Natural History is open from 10 a.m. to 5:30 p.m. every day. Admission is free.

Michele Urie | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>