Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant agriculture: 50 million years of success

20.01.2003


Fungus-growing ants practice agriculture and have been doing so for the past 50 million years according to research published in the Jan. 17 issue of Science. These ants not only grow fungus gardens underground for food but also have adapted to handling parasitic "weeds" that infect their crops.

The team of scientists who collaborated on this analysis includes Ted Schultz of the Smithsonian’s National Museum of Natural History, Bess Wong of the Smithsonian Tropical Research Institute, Cameron Currie and Alison Stuart of the University of Kansas, Stephen Rehner of the U.S. Department of Agriculture, Ulrich Mueller of the University of Texas at Austin, Gi-Ho Sung and Joseph Spatafora of Oregon State University, and Neil Strauss of the University of Toronto.

"The ants, garden fungi, and weeds have all been co-evolving since ant agriculture first got started -- that’s around 50 million years of symbiosis," said Dr. Ted Schultz, research entomologist in the Entomology Section of the Smithsonian’s National Museum of Natural History.



By studying DNA sequences from ants, garden fungi and fungal weeds, the research team was able to peer millions of years into the past to see how this co-evolutionary system evolved. The researchers learned that the ants, their garden fungi and the parasitic fungal weeds have been living in a co-evolved, complex system for a very long time, probably 50 million years or longer. During that time, they have been locked in a never-ending evolutionary "arms race," in which the ants and garden fungi are perpetually evolving new ways to control the parasitic fungal weeds, and the weeds are perpetually developing new ways to continue to infect fungus gardens.

There is a fourth factor in the ant colonies, a kind of bacteria that the ants cultivate on the outsides of their bodies. These bacteria produce an antibiotic that specifically suppresses the growth of the weed fungi, and the ants use this antibiotic to keep their gardens healthy.

"We suspect that it’s going to turn out that this antibiotic use also goes back to the beginning of ant agriculture," said Schultz.

Past work by researchers established phylogenies (evolutionary histories) for the ants and their cultivated fungi, and it also established that the ant gardens almost always contain weed molds in the genus "Escovopsis," which are found nowhere else in nature -- only in ant gardens. One of the new findings in this research paper is that the scientists now have a phylogeny for the weed fungi, an association that appears to be very ancient.

The collaboration that produced this work is supported by a five-year National Science Foundation special program (Integrated Research Challenges in Environmental Biology) grant, and the Smithsonian Institution is the designated permanent repository for all of the project’s ant, fungal, and bacterial specimens, preserved both for morphological and molecular study. The museum has set up an archival liquid N2 DNA repository for the molecular collections generated by the study.

"The Smithsonian’s repository of ant, fungal and bacterial specimens is an extremely important resource because most of these organisms have never been collected before," said Schultz. "Ant agriculture has become a model system that will be studied for decades or even centuries into the future -- and the Smithsonian’s morphological and DNA specimen collections will be the source of the data for many of those studies."

The Entomology Section deals with insects and their relatives, an immense assemblage comprising about 95 percent of the described animal species of the world. Scientific research by staff concentrates on basic taxonomy and life history, but may include studies of population biology, biogeography, ecology, behavior and invasive species. The Smithsonian’s National Entomological Collection harbors some 35 million entomological specimens, and is essential to researchers in the United States and throughout the world.


The National Museum of Natural History, located at 10th Street and Constitution Avenue N.W., welcomed more than 6 million people during the year 2002, making it the most visited natural history museum in the world. Opened in 1910, the Museum is dedicated to maintaining and preserving the world’s most extensive collection of natural history specimens and human artifacts. It also fosters critical scientific research as well as educational programs and exhibitions that present the work of its scientists and curators to the public. The Museum is part of the Smithsonian Institution, the world’s largest museum and research complex. The Smithsonian’s National Museum of Natural History is open from 10 a.m. to 5:30 p.m. every day. Admission is free.

Michele Urie | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>