Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the movement of genes

30.12.2002


While promising the possibility of hardier crops and a larger, more robust food supply for the world, worries continue over the effect genetically engineered plants might have on the environment. One fear is over the movement of altered genes from domesticated populations to the wild and the effect of these "escaped" genes on ecosystems. In a study published in the December issue of Ecological Applications, Charity Cummings (University of Kansas), Helen Alexander (University of Kansas), Allison Snow (Ohio State University), Loren Riesenberg (University of Indiana) and colleagues tracked the movement of three specific alleles, or genes, in wild and domesticated sunflowers to determine how often and to what extent these plant populations will hybridize and pass specific genes on to the next generation.

Domesticated sunflowers are commonly grown in the plains states of the US and California, and the wild sunflower is a native, annual weed that occurs throughout most of the US. Sunflower and other crops are currently under development for a variety of traits to make them more resistant to fungi and pests. Currently wild sunflowers pose a problem for farmers as a weed in domesticated sunflower crops. These already weedy plants could cause even more damage if a gene for insect resistance crossed into the wild population from the cultivated sunflowers.

Many undergraduate biology students conduct an experiment using daphnia, crickets or other small invertebrates, measuring the number of offspring produced, how many survive and several other factors to understand survivorship and other population concepts. The scientists used a similar approach to predict the likelihood of genes from hybrid crops entering wild populations and staying in the wild sunflowers. Starting with a hundred wild plants and a hundred crop-wild hybrids, the scientists set up three plots and observed the sunflowers for two growing seasons, collecting the seeds to analyze the protein and gene flow between generations of plants.



The team found wild and hybrids had similar survival rates, but the wild plants produced more flower heads, more seeds per head and more seeds overall than the hybrids, suggesting the wild plants would dominate by shear number when competing with the gene-altered hybrid plants. The hybrid seeds were also preferred by birds and other organisms that fed on the seeds, making the chances for these plants to reproduce successfully even lower.

The amount of the genetic markers passed on between generations varied, but the domesticated crop genes were likely to survive for many generations once they enter the wild population. This research could have larger implications for studying other organisms or to estimate the gene movement of other altered crops.

"We already knew that crop genes could spread, but now we know that direct measures of seed production can help predict the frequency of crop genes in wild populations. Also, this study shows that crop genes can persist even when the first generation of hybrids perform quite poorly compared to the wild plants," said Snow.

The group’s research offers new ways for ecological science to predict the movement of genes among plant populations. Previous studies have shown that cultivated crops will cross-pollinate, sharing genetic material with wild plants. Other work indirectly estimated the likelihood of a gene lasting into mixed crop-wild populations while others directly measured gene flow in these hybrid populations. This study is the first to combine these approaches.


Ecological Applications is a peer-reviewed journal published six times a year by the Ecological Society of America (ESA). Copies of the above article are available free of charge to the press through the Society’s Public Affairs Office. Members of the press may also obtain copies of ESA’s entire family of publications, which includes Ecology, Ecological Applications, and Ecological Monographs. Others interested in copies of articles should contact the Reprint Department at the address in the masthead.

Founded in 1915, the Ecological Society of America (ESA) is a scientific, non-profit, organization with over 7800 members. Through ESA reports, journals, membership research, and expert testimony to Congress, ESA seeks to promote the responsible application of ecological data and principles to the solution of environmental problems.


Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>