Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Small RNA’ research cited as breakthrough of the year

20.12.2002


A broad group of discoveries about the biological powers of "small-RNA" molecules, some of which were made by researchers at Oregon State University, will be hailed on Friday as the scientific "Breakthrough of the Year" by the journal Science. Science is published by the American Association for the Advancement of Science, the world’s largest general scientific society, and each year the prestigious journal identifies what it believes were the top 10 research advances of the year.



For 2002, the magazine cited a body of work being done by several research groups across the nation on small RNA molecules, calling them "electrifying discoveries, which are prompting biologists to overhaul their vision of the cell and its evolution." These tiny bits of genetic material were virtually unknown a decade ago but are now on the cutting edge of cell biology, and a better understanding of their function may form the basis for important advances in medicine, agriculture and other fields.

During the year, a major research program at OSU that is being supported by a $1.7 million grant from the National Science Foundation contributed two important publications outlining new findings about these extraordinarily small regulatory molecules, including one article in the journal Science.


"In the fields of molecular and cellular biology, the discoveries about small RNA are now attracting a huge level of interest," said James Carrington, professor and director of the OSU Center for Gene Research and Biotechnology. "To many people, this may seem very complicated and esoteric, but it’s findings such as this that will soon be opening doors for new advances in medicine, immunology, plant development, and many other areas.

"I know of several companies founded within the past year that are devoted entirely to translating this new research into pharmaceuticals and other products," Carrington said.

A comprehensive study of DNA, cell biology and genetics evolved steadily from the 1960s through the 1990s, Carrington said. Most of the work focused on conventional, protein coding genes, of which there are thousands. They were easy to study and recognize, and that’s what most molecular biologists spent their careers working on, he said. During that time, most RNA was believed to merely take genetic "orders" from DNA, and through the processes of transcription and translation, help produce the proteins that give cells their function.

In 1993, the first small RNA was discovered, and at the time it was thought to be a biological oddity. It appeared to have some type of regulatory function in the cell but little was known about it.

But research in this field has exploded in just the past year or two. It now includes analysis of micro-RNAs and small interfering RNAs, and other biochemical players, in both plants and animals. A biochemical function of profound importance, once believed to be an odd feature of a single worm species, is now understood to be a major controller of cellular function in practically every species of plant and animal. Including, of course, humans.

After decades of studying cells, Carrington said, a whole new field that scientists never knew existed is wide open for exploration. "As it is with any key scientific advance, the way things work always seem obvious and simple in retrospect," Carrington said. "Small RNAs offer an elegant, simple and specific mechanism to control gene expression. Looking at it now, it seems obvious that cells would have a mechanism such as this, it makes perfect sense. But until just lately, we never knew where to look. Now we do."

Scientists have barely scratched the surface of understanding the functions of small RNAs. It’s already clear they play a major role in gene "expression," or the molecular mechanisms controlling genes that are required for cells to turn into a lung, liver, brain or other cell. It’s also now clear that small RNAs control how whole chromosomes, or regions of chromosomes, are activated or deactivated.

Small RNAs may also hold the key to understanding some types of genetic birth defects, allow new types of disease therapies, understand and control plant development, influence the function of the immune system, help explain some cancers, the function of stem cells, and many other cellular functions.

In the past year, the OSU research program in Carrington’s laboratory has made two important contributions to the understanding of small RNAs. In July, a publication in the journal Plant Cell outlined the first discovery of micro RNAs and small interfering RNAs, which comprise the two major types of small RNAs, in plants. And in September, a publication in the journal Science explained how micro RNA in plants can stop the function of messenger RNA by literally cutting it in half, and thereby exert a strong control over gene expression.

"In our own and other research programs around the country, we’re now learning how micro RNA can shut genes down and prevent their expression," Carrington said. "So far it appears from our work at OSU that micro RNAs in plants are like hatchets that cut messenger RNAs into nonfunctional pieces. In animals, other researchers have shown that micro RNAs attach to target messenger RNAs and prevent translation into proteins."

Small-RNAs are now known to be produced by the transcription of tiny genes, in regions of the genome that were previously thought to be vacant or useless DNA. They are extraordinarily tiny and have escaped notice, until recently. However, unlike messenger RNAs, small RNAs are not translated to produce proteins. Their roles are more devoted to control of the process of gene expression or chromosome activity.

"I think one of the most exciting aspects of this work is witnessing the rapid transition of basic research into findings of medical and practical importance," Carrington said. "The breakthrough of the year recognition suggests that we should expect big things out of small RNAs."



By David Stauth, 541-737-0787

SOURCE: James Carrington, 541-737-3347


James Carrington | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>