Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A drop of ocean water tells a story


Scientists are still learning what’s in a drop of ocean water, according to this week’s Nature Magazine. And the answers have implications for the whole planet, says co-author Craig Carlson, an oceanographer at the University of California, Santa Barbara. Carlson is an assistant professor in the Department of Ecology, Evolution and Marine Biology.

About ten thousand bacterioplankton of the type SAR 11 are found in every drop of seawater. And yet, as explained in the article, which gives the first accurate quantitative assessment of SAR 11, scientists are only beginning to understand what these organisms do.

The article is the result of a collaborative effort between Craig Carlson, and his lab, and Stephen Giovannoni of Oregon State University (OSU) and his lab, including first author Robert Morris. They are attempting to better understand the role of microbes in natural systems. The work was conducted under the Oceanic Microbial Observatory project, a joint effort between UCSB, OSU and the Bermuda Biological Station for Research that was initiated in 1999 by the National Science Foundation.

"Microbes like bacterioplankton are important biogeochemical agents," explained Carlson. "Over geologic time, they have played an important role in altering the chemical nature of the earths’s environment, allowing for the evolution of plants and animals. Without them, we would have no oxygen to breathe, organic matter would not be degraded, and the cycling of life’s essential nutrients would cease."

In a world that appears to be dominated by large organisms (i.e.things we can see), some might ask why we care about microbes –– don’t they just make us sick? The fact is that only a small percentage of microbes are pathogenic; most are beneficial to life on earth, according to Carlson. The living biomass and processes that drive the earth’s biosphere are really in the hands of the microbes.

For decades marine scientists have been able to enumerate bacterioplankton and scientists have known that they are important to the cycling of nutrients in the ocean. They have also known that there are many types (species, strains) of bacterioplankton in the oceans. But, until recently, the ability to distinguish one species from another in a quantitative manner was very limited. As a result, most oceanographers treat the bacterioplankton as a ’black box.’ "However, we know that all bacterial species do not function the same way, so the ’black box’ approach grossly oversimplifies microbial contributions," said Carlson. "One of the objectives of this study was to ’open up’ the ’black box’ and assess quantitatively how a specific group of bacterioplankton, called SAR 11, contribute to the total bacterial pool in the open ocean."

SAR 11, were first identified in the early 1990s by Steve Giovannoni from samples collected in the Sargasso Sea. They were identified qualitatively via gene cloning as a major group of uncultured bacterioplankton. Until now scientists haven’t had good quantitative information about how this specific group of bacteria contributed to the total oceanic bacterial pool. The use of molecular techniques in combination with microscopy now allows for the identification of certain bacteria types. The scientists found that the bacterioplankton SAR 11 comprises as much as 50 percent of the total surface microbial community (from zero to 140 meters below the surface) and 25 percent of the rest of the water column down to the bottom of the sea.

They were able to do this using a technique called "FISH," short for fluorescence in situ hybridization. The SAR 11 FISH probes, developed in Giovannoni’s lab, are short DNA sequences that have a fluorescent tag on them. Water drops containing one hundred thousand to millions of many different types of bacteria are concentrated onto a filter. Under special laboratory conditions the fluorescent DNA probe sticks to the targeted SAR 11 bacterial sequence and lights up like a Christmas tree bulb when exposed to a certain wavelength of light, and thus the SAR 11 can be counted.

Carlson said that "FISH" probe allows scientists to gain qualitative and quantitative information from a mixed bag of bacteria. "We can tell who they are and how many there are," said Carlson. "By sheer numbers, SAR 11 is important," said Carlson. "They are one of the most successful groups of bacteria in the ocean. The next step is to learn what they do. Identification is a first big step that allows us to assess their particular role in nature."

Craig Carlson can be reached at (805) 893-2541 or

Gail Gallessich | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>