Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A drop of ocean water tells a story

20.12.2002


Scientists are still learning what’s in a drop of ocean water, according to this week’s Nature Magazine. And the answers have implications for the whole planet, says co-author Craig Carlson, an oceanographer at the University of California, Santa Barbara. Carlson is an assistant professor in the Department of Ecology, Evolution and Marine Biology.



About ten thousand bacterioplankton of the type SAR 11 are found in every drop of seawater. And yet, as explained in the article, which gives the first accurate quantitative assessment of SAR 11, scientists are only beginning to understand what these organisms do.

The article is the result of a collaborative effort between Craig Carlson, and his lab, and Stephen Giovannoni of Oregon State University (OSU) and his lab, including first author Robert Morris. They are attempting to better understand the role of microbes in natural systems. The work was conducted under the Oceanic Microbial Observatory project, a joint effort between UCSB, OSU and the Bermuda Biological Station for Research that was initiated in 1999 by the National Science Foundation.


"Microbes like bacterioplankton are important biogeochemical agents," explained Carlson. "Over geologic time, they have played an important role in altering the chemical nature of the earths’s environment, allowing for the evolution of plants and animals. Without them, we would have no oxygen to breathe, organic matter would not be degraded, and the cycling of life’s essential nutrients would cease."

In a world that appears to be dominated by large organisms (i.e.things we can see), some might ask why we care about microbes –– don’t they just make us sick? The fact is that only a small percentage of microbes are pathogenic; most are beneficial to life on earth, according to Carlson. The living biomass and processes that drive the earth’s biosphere are really in the hands of the microbes.

For decades marine scientists have been able to enumerate bacterioplankton and scientists have known that they are important to the cycling of nutrients in the ocean. They have also known that there are many types (species, strains) of bacterioplankton in the oceans. But, until recently, the ability to distinguish one species from another in a quantitative manner was very limited. As a result, most oceanographers treat the bacterioplankton as a ’black box.’ "However, we know that all bacterial species do not function the same way, so the ’black box’ approach grossly oversimplifies microbial contributions," said Carlson. "One of the objectives of this study was to ’open up’ the ’black box’ and assess quantitatively how a specific group of bacterioplankton, called SAR 11, contribute to the total bacterial pool in the open ocean."

SAR 11, were first identified in the early 1990s by Steve Giovannoni from samples collected in the Sargasso Sea. They were identified qualitatively via gene cloning as a major group of uncultured bacterioplankton. Until now scientists haven’t had good quantitative information about how this specific group of bacteria contributed to the total oceanic bacterial pool. The use of molecular techniques in combination with microscopy now allows for the identification of certain bacteria types. The scientists found that the bacterioplankton SAR 11 comprises as much as 50 percent of the total surface microbial community (from zero to 140 meters below the surface) and 25 percent of the rest of the water column down to the bottom of the sea.

They were able to do this using a technique called "FISH," short for fluorescence in situ hybridization. The SAR 11 FISH probes, developed in Giovannoni’s lab, are short DNA sequences that have a fluorescent tag on them. Water drops containing one hundred thousand to millions of many different types of bacteria are concentrated onto a filter. Under special laboratory conditions the fluorescent DNA probe sticks to the targeted SAR 11 bacterial sequence and lights up like a Christmas tree bulb when exposed to a certain wavelength of light, and thus the SAR 11 can be counted.

Carlson said that "FISH" probe allows scientists to gain qualitative and quantitative information from a mixed bag of bacteria. "We can tell who they are and how many there are," said Carlson. "By sheer numbers, SAR 11 is important," said Carlson. "They are one of the most successful groups of bacteria in the ocean. The next step is to learn what they do. Identification is a first big step that allows us to assess their particular role in nature."


###
Craig Carlson can be reached at (805) 893-2541 or carlson@lifesci.ucsb.edu

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>