Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A drop of ocean water tells a story

20.12.2002


Scientists are still learning what’s in a drop of ocean water, according to this week’s Nature Magazine. And the answers have implications for the whole planet, says co-author Craig Carlson, an oceanographer at the University of California, Santa Barbara. Carlson is an assistant professor in the Department of Ecology, Evolution and Marine Biology.



About ten thousand bacterioplankton of the type SAR 11 are found in every drop of seawater. And yet, as explained in the article, which gives the first accurate quantitative assessment of SAR 11, scientists are only beginning to understand what these organisms do.

The article is the result of a collaborative effort between Craig Carlson, and his lab, and Stephen Giovannoni of Oregon State University (OSU) and his lab, including first author Robert Morris. They are attempting to better understand the role of microbes in natural systems. The work was conducted under the Oceanic Microbial Observatory project, a joint effort between UCSB, OSU and the Bermuda Biological Station for Research that was initiated in 1999 by the National Science Foundation.


"Microbes like bacterioplankton are important biogeochemical agents," explained Carlson. "Over geologic time, they have played an important role in altering the chemical nature of the earths’s environment, allowing for the evolution of plants and animals. Without them, we would have no oxygen to breathe, organic matter would not be degraded, and the cycling of life’s essential nutrients would cease."

In a world that appears to be dominated by large organisms (i.e.things we can see), some might ask why we care about microbes –– don’t they just make us sick? The fact is that only a small percentage of microbes are pathogenic; most are beneficial to life on earth, according to Carlson. The living biomass and processes that drive the earth’s biosphere are really in the hands of the microbes.

For decades marine scientists have been able to enumerate bacterioplankton and scientists have known that they are important to the cycling of nutrients in the ocean. They have also known that there are many types (species, strains) of bacterioplankton in the oceans. But, until recently, the ability to distinguish one species from another in a quantitative manner was very limited. As a result, most oceanographers treat the bacterioplankton as a ’black box.’ "However, we know that all bacterial species do not function the same way, so the ’black box’ approach grossly oversimplifies microbial contributions," said Carlson. "One of the objectives of this study was to ’open up’ the ’black box’ and assess quantitatively how a specific group of bacterioplankton, called SAR 11, contribute to the total bacterial pool in the open ocean."

SAR 11, were first identified in the early 1990s by Steve Giovannoni from samples collected in the Sargasso Sea. They were identified qualitatively via gene cloning as a major group of uncultured bacterioplankton. Until now scientists haven’t had good quantitative information about how this specific group of bacteria contributed to the total oceanic bacterial pool. The use of molecular techniques in combination with microscopy now allows for the identification of certain bacteria types. The scientists found that the bacterioplankton SAR 11 comprises as much as 50 percent of the total surface microbial community (from zero to 140 meters below the surface) and 25 percent of the rest of the water column down to the bottom of the sea.

They were able to do this using a technique called "FISH," short for fluorescence in situ hybridization. The SAR 11 FISH probes, developed in Giovannoni’s lab, are short DNA sequences that have a fluorescent tag on them. Water drops containing one hundred thousand to millions of many different types of bacteria are concentrated onto a filter. Under special laboratory conditions the fluorescent DNA probe sticks to the targeted SAR 11 bacterial sequence and lights up like a Christmas tree bulb when exposed to a certain wavelength of light, and thus the SAR 11 can be counted.

Carlson said that "FISH" probe allows scientists to gain qualitative and quantitative information from a mixed bag of bacteria. "We can tell who they are and how many there are," said Carlson. "By sheer numbers, SAR 11 is important," said Carlson. "They are one of the most successful groups of bacteria in the ocean. The next step is to learn what they do. Identification is a first big step that allows us to assess their particular role in nature."


###
Craig Carlson can be reached at (805) 893-2541 or carlson@lifesci.ucsb.edu

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>