Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Binary’ enzyme created by TSRI scientists demonstrates Darwinian evolution at its simplest

19.12.2002


Two scientists at The Scripps Research Institute (TSRI), Research Associate John S. Reader, D.Phil, and Professor Gerald F. Joyce, M.D., Ph.D., both of the institute’s Department of Molecular Biology, have succeeded in creating an enzyme based on a "binary" genetic code--one containing only two different subunits.



This research, described in the latest issue of the journal Nature, demonstrates that Darwinian evolution can occur in a genetic system with only two bases, and it also supports a theory in the field that an early form of life on earth may have been restricted to two bases.

"Nobody will ever top this because binary systems are the most reduced form of information processing," says Joyce. "Two different subunits are the absolute minimum number you need [for Darwinian evolution]."


Where protein enzymes are polymer strings made up of 20 building blocks (the amino acids), and RNA or DNA enzymes are made up of four different building blocks (the nucleotides), the world’s first binary enzyme has but two different building blocks, based on the nucleotides A and U.

This enzyme is functionally equivalent to a "polymerase" molecule. Polymerases are ubiquitous in nature as the enzymes tasked with taking a "template" string of DNA or RNA bits and making copies of it.

Reader and Joyce’s binary enzyme is able to join pieces of RNA that are composed of the same two nucleotide symbols. In the test tube, the binary string folds into an active three-dimensional structure and uses a portion of this string as a template. On the template, it "ligates," or joins subunits together, copying the template.

Experimental Approaches to the Origins of Life

If the origins of life are a philosopher’s dream, then they are also a historian’s nightmare. There are no known "sources," no fossils, that show us what the very earliest life on earth looked like. The earliest fossils we have found are stromatolites--large clumps of single-celled bacteria that grew in abundance in the ancient world three and a half billion years ago in what is now western Australia.

But as simple as the bacteria that formed stromatolites are, they were almost certainly not the very first life forms. Since these bacteria were "evolved" enough to have formed metabolic processes, scientists generally assume that they were preceded by some simpler, precursor life form. But between biological nothingness and bacteria, what was there?

Far from being the subject of armchair philosophy or wild speculation, investigating the origins of life is an active area of research and of interest to many scientists who, like Reader and Joyce, approach the questions experimentally.

Since the fossil record may not show us how life began, what scientists can do is to determine, in a general way, how life-like attributes can emerge within complex chemical systems. The goal is not necessarily to answer how life did emerge in our early, chemical world, but to discover how life does emerge in any chemical world--to ask not just what happens in the past, but what happens in general.

The most important questions are: What is feasible? What chemical systems have the capacity to display signs of life? What is the blueprint for making life in the chemical sense?

One of the great advances in the last few decades has been the notion that at one time life was ruled by RNA-based life--an "RNA world" in which RNA enzymes were the chief catalytic molecules and RNA nucleotides were the building blocks that stored genetic information.

"It’s pretty clear that there was a time when life was based on RNA," says Joyce, "not just because it’s feasible that RNA can be a gene and an enzyme and can evolve, but because we really think it happened historically."

However, RNA is probably not the initial molecule of life, because one of the four RNA bases--"C"--is chemically unstable. It readily degrades into U, and may not have been abundant enough on early Earth for a four-base genetic system to have been feasible.

Odd Base Out

To address this, Nobel Laureate Francis Crick suggested almost 40 years ago that life may have started with two bases instead of four. Now Reader and Joyce have demonstrated that a two-base system is chemically feasible.

Several years ago, Joyce showed that RNA enzymes could be made using only three bases (A, U, and G, but lacking C). The "C minus" enzyme was still able to catalyze reactions, and this work paved the way for creating a two-base enzyme.

In the current study, Reader and Joyce first created a three-base enzyme (A, U, G) and then performed chemical manipulations to convert all the A to D (diaminopurine, a modified form of A) and biochemical manipulations to remove all the G. They were left with an enzyme based on a two-letter code (D and U).

Reader and Joyce insist that their study does not prove life started this way. It does, however, demonstrate that it is possible to have a genetic system of molecules capable of undergoing Darwinian evolution with only two distinct subunits.


The article, "A ribozyme composed of only two different nucleotides," was authored by John S. Reader and Gerald F. Joyce and appears in the December 19, 2002 issue of the journal Nature.

This work was supported by a grant from the National Aeronautics and Space Administration (NASA), the Skaggs Institute for Chemical Biology at The Scripps Research Institute, and through a postdoctoral fellowship from the NASA Specialized Center for Research and Training (NSCORT) in Exobiology.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>