Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Binary’ enzyme created by TSRI scientists demonstrates Darwinian evolution at its simplest


Two scientists at The Scripps Research Institute (TSRI), Research Associate John S. Reader, D.Phil, and Professor Gerald F. Joyce, M.D., Ph.D., both of the institute’s Department of Molecular Biology, have succeeded in creating an enzyme based on a "binary" genetic code--one containing only two different subunits.

This research, described in the latest issue of the journal Nature, demonstrates that Darwinian evolution can occur in a genetic system with only two bases, and it also supports a theory in the field that an early form of life on earth may have been restricted to two bases.

"Nobody will ever top this because binary systems are the most reduced form of information processing," says Joyce. "Two different subunits are the absolute minimum number you need [for Darwinian evolution]."

Where protein enzymes are polymer strings made up of 20 building blocks (the amino acids), and RNA or DNA enzymes are made up of four different building blocks (the nucleotides), the world’s first binary enzyme has but two different building blocks, based on the nucleotides A and U.

This enzyme is functionally equivalent to a "polymerase" molecule. Polymerases are ubiquitous in nature as the enzymes tasked with taking a "template" string of DNA or RNA bits and making copies of it.

Reader and Joyce’s binary enzyme is able to join pieces of RNA that are composed of the same two nucleotide symbols. In the test tube, the binary string folds into an active three-dimensional structure and uses a portion of this string as a template. On the template, it "ligates," or joins subunits together, copying the template.

Experimental Approaches to the Origins of Life

If the origins of life are a philosopher’s dream, then they are also a historian’s nightmare. There are no known "sources," no fossils, that show us what the very earliest life on earth looked like. The earliest fossils we have found are stromatolites--large clumps of single-celled bacteria that grew in abundance in the ancient world three and a half billion years ago in what is now western Australia.

But as simple as the bacteria that formed stromatolites are, they were almost certainly not the very first life forms. Since these bacteria were "evolved" enough to have formed metabolic processes, scientists generally assume that they were preceded by some simpler, precursor life form. But between biological nothingness and bacteria, what was there?

Far from being the subject of armchair philosophy or wild speculation, investigating the origins of life is an active area of research and of interest to many scientists who, like Reader and Joyce, approach the questions experimentally.

Since the fossil record may not show us how life began, what scientists can do is to determine, in a general way, how life-like attributes can emerge within complex chemical systems. The goal is not necessarily to answer how life did emerge in our early, chemical world, but to discover how life does emerge in any chemical world--to ask not just what happens in the past, but what happens in general.

The most important questions are: What is feasible? What chemical systems have the capacity to display signs of life? What is the blueprint for making life in the chemical sense?

One of the great advances in the last few decades has been the notion that at one time life was ruled by RNA-based life--an "RNA world" in which RNA enzymes were the chief catalytic molecules and RNA nucleotides were the building blocks that stored genetic information.

"It’s pretty clear that there was a time when life was based on RNA," says Joyce, "not just because it’s feasible that RNA can be a gene and an enzyme and can evolve, but because we really think it happened historically."

However, RNA is probably not the initial molecule of life, because one of the four RNA bases--"C"--is chemically unstable. It readily degrades into U, and may not have been abundant enough on early Earth for a four-base genetic system to have been feasible.

Odd Base Out

To address this, Nobel Laureate Francis Crick suggested almost 40 years ago that life may have started with two bases instead of four. Now Reader and Joyce have demonstrated that a two-base system is chemically feasible.

Several years ago, Joyce showed that RNA enzymes could be made using only three bases (A, U, and G, but lacking C). The "C minus" enzyme was still able to catalyze reactions, and this work paved the way for creating a two-base enzyme.

In the current study, Reader and Joyce first created a three-base enzyme (A, U, G) and then performed chemical manipulations to convert all the A to D (diaminopurine, a modified form of A) and biochemical manipulations to remove all the G. They were left with an enzyme based on a two-letter code (D and U).

Reader and Joyce insist that their study does not prove life started this way. It does, however, demonstrate that it is possible to have a genetic system of molecules capable of undergoing Darwinian evolution with only two distinct subunits.

The article, "A ribozyme composed of only two different nucleotides," was authored by John S. Reader and Gerald F. Joyce and appears in the December 19, 2002 issue of the journal Nature.

This work was supported by a grant from the National Aeronautics and Space Administration (NASA), the Skaggs Institute for Chemical Biology at The Scripps Research Institute, and through a postdoctoral fellowship from the NASA Specialized Center for Research and Training (NSCORT) in Exobiology.

Keith McKeown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>