Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find fully differentiated blood cells remain able to switch identity

16.12.2002


Scientists at the University of Pennsylvania School of Veterinary Medicine have found a new wrinkle in the developmental biology dogma that cell differentiation occurs irreversibly as stem cells give rise to increasingly specialized types of offspring cells. The researchers have shown that certain mouse cells retain an ability to oscillate between very distinct blood cell types -- B-cells and macrophages -- long after what has been commonly regarded as the point of no return.



These latest findings on the phenomenon sometimes referred to as "lineage promiscuity" appear on the Web site of the journal Blood and will be published in the journal’s print edition in March 2003.

"This work reveals that seemingly committed cells have more plasticity than we had thought," said senior author Andrei Thomas-Tikhonenko, assistant professor of pathobiology at Penn. "It appears there is at least a small window where terminally differentiated cells vacillate on which identity to adopt. We suspect that this phenomenon is not limited to B-cells and macrophages in mice."


Pushing mature cells into other lineages may offer a new way to replace cells involved in blood diseases and neurodegenerative disorders such as Alzheimer’s disease. Scientists also say this approach offers the potential for converting lymphoma cells that are resistant to treatment into more manageable forms of cancer.

"We found that just two genes, EBF and Pax5, are turned off when B-cells are concerted into macrophages; Pax5 is a known oncogene implicated in the growth of B-cell lymphomas," Thomas-Tikhonenko said. "It’s possible that by targeting this gene with drugs, we may be able to convert malignant B-cell lymphomas into much less harmful histiocytomas, tumors composed of relatively inactive macrophages."

Previous research has demonstrated that when B-cells are transplanted from an animal into a petri dish, the cells sometimes change into macrophages. Thomas-Tikhonenko and colleagues found that when the cells are returned to the animal, they generate spherical B-cell lymphomas, indicating that they have changed their identity yet again. Moreover, the cells could continue oscillating between B-cells and macrophages indefinitely, as many times as they were relocated.

"In other words, ’unfaithful’ cells that have strayed from their original identity can ’come to their senses’ and return to the original lineage," Thomas-Tikhonenko said.

Like all blood cells, B-cells and macrophages descend from hematopoeitic stem cells; however, as members of different families, the two cells do not share a common parent. B-cells arise from a lymphoid progenitor, while macrophages come from a myeloid progenitor.

"Until recently, it was believed that the various cell types of the blood are generated from stem cells in a controlled but irreversible fashion," said James Hagman, an immunology researcher at the National Jewish Medical and Research Center in Denver who was not involved in this research. "Now, Dr. Thomas-Tikhonenko and colleagues provide a new example of developmental flexibility. Together with other published results, these observations blur the concept of fixed cell types and provide new insights concerning potential uses for adult stem cells."


Thomas-Tikhonenko was joined in the research by Duonan Yu and Michael H. Goldschmidt of Penn’s Department of Pathobiology, David Allman and John G. Monroe of Penn’s Department of Pathology and Laboratory Medicine and Michael L. Atchison of Penn’s Department of Animal Biology. The work was funded by the National Cancer Institute.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>