Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find fully differentiated blood cells remain able to switch identity

16.12.2002


Scientists at the University of Pennsylvania School of Veterinary Medicine have found a new wrinkle in the developmental biology dogma that cell differentiation occurs irreversibly as stem cells give rise to increasingly specialized types of offspring cells. The researchers have shown that certain mouse cells retain an ability to oscillate between very distinct blood cell types -- B-cells and macrophages -- long after what has been commonly regarded as the point of no return.



These latest findings on the phenomenon sometimes referred to as "lineage promiscuity" appear on the Web site of the journal Blood and will be published in the journal’s print edition in March 2003.

"This work reveals that seemingly committed cells have more plasticity than we had thought," said senior author Andrei Thomas-Tikhonenko, assistant professor of pathobiology at Penn. "It appears there is at least a small window where terminally differentiated cells vacillate on which identity to adopt. We suspect that this phenomenon is not limited to B-cells and macrophages in mice."


Pushing mature cells into other lineages may offer a new way to replace cells involved in blood diseases and neurodegenerative disorders such as Alzheimer’s disease. Scientists also say this approach offers the potential for converting lymphoma cells that are resistant to treatment into more manageable forms of cancer.

"We found that just two genes, EBF and Pax5, are turned off when B-cells are concerted into macrophages; Pax5 is a known oncogene implicated in the growth of B-cell lymphomas," Thomas-Tikhonenko said. "It’s possible that by targeting this gene with drugs, we may be able to convert malignant B-cell lymphomas into much less harmful histiocytomas, tumors composed of relatively inactive macrophages."

Previous research has demonstrated that when B-cells are transplanted from an animal into a petri dish, the cells sometimes change into macrophages. Thomas-Tikhonenko and colleagues found that when the cells are returned to the animal, they generate spherical B-cell lymphomas, indicating that they have changed their identity yet again. Moreover, the cells could continue oscillating between B-cells and macrophages indefinitely, as many times as they were relocated.

"In other words, ’unfaithful’ cells that have strayed from their original identity can ’come to their senses’ and return to the original lineage," Thomas-Tikhonenko said.

Like all blood cells, B-cells and macrophages descend from hematopoeitic stem cells; however, as members of different families, the two cells do not share a common parent. B-cells arise from a lymphoid progenitor, while macrophages come from a myeloid progenitor.

"Until recently, it was believed that the various cell types of the blood are generated from stem cells in a controlled but irreversible fashion," said James Hagman, an immunology researcher at the National Jewish Medical and Research Center in Denver who was not involved in this research. "Now, Dr. Thomas-Tikhonenko and colleagues provide a new example of developmental flexibility. Together with other published results, these observations blur the concept of fixed cell types and provide new insights concerning potential uses for adult stem cells."


Thomas-Tikhonenko was joined in the research by Duonan Yu and Michael H. Goldschmidt of Penn’s Department of Pathobiology, David Allman and John G. Monroe of Penn’s Department of Pathology and Laboratory Medicine and Michael L. Atchison of Penn’s Department of Animal Biology. The work was funded by the National Cancer Institute.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>