Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Got milk? Scientists discover key lactation gene

16.12.2002


Dr. Mario Capecchi and colleagues at the University of Utah and the Department of Veterans Affairs Medical Center (Salt Lake City, UT) have discovered that a gene called xanthine oxidoreductase, or XOR for short, is required for lactation in female mice. This previously unidentified role for XOR in lactation reveals a possible genetic basis for the lactation difficulties experienced by nearly 5% of women.



XOR was originally identified as encoding an enzyme involved in purine catabolism (the breakdown of adenine and guanine nucleotide bases). Because XOR is expressed in nearly all cells of the body and its protein product participates in a basic metabolic process fundamental to cell survival, XOR was labeled as a "housekeeping gene." But in addition to its constitutive expression patterns, XOR is also highly expressed in lactating mammary epithelium beginning in late pregnancy – prompting researchers to suspect an additional, and perhaps different, role for XOR in the lactating mammary gland.

To identify the function of XOR in the lactating mammary gland, Dr. Capecchi and colleagues generated mice lacking either one (heterozygous) or both (homozygous) functional copies of the XOR gene. As expected for homozygous mutants of a housekeeping gene, homozygous XOR-mutant mice died by 6 weeks of age. In contrast, though, the heterozygous XOR-mutant mice appeared normal, healthy and fertile, but first author Claudia Vorbach and colleagues soon noticed that pups from the XOR heterozygous females all died ~12 days postpartum. The researchers found that pups born to heterozygous XOR-mutant female mice – regardless of the pups’ XOR status – were essentially starving due to their mother’s inability to maintain lactation.


Further research by Vorbach et al. revealed an important role for the XOR protein in lactation, distinct from its previously identified role in purine catabolism. XOR is required for the envelopment of milk fat droplets with a phospholipid bilayer that is necessary for their secretion from the mammary epithelium. The inability of heterozygous XOR-mutant females to secrete milk fat droplets causes severe tissue damage, resulting in the collapse of the mammary epithelium and the subsequent premature involution of the mammary gland.

This discovery that 2 functional copies of the XOR gene are necessary for females to secrete fat – the major calorie supply for newborns – into milk not only broadens the known functional range of XOR, it lends important molecular insight into the process of lactation, and suggests that human females with mutations in the XOR gene may be potential candidates for lactation insufficiencies.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>