Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find genes connected to seasonal reproductive clock in hamsters

03.12.2002


Researchers at Ohio State University have identified three genes that are involved in the seasonal clock that determines when hamsters reproduce.



While researchers have learned a lot about reproductive clocks in some animals, this study is unique in helping uncover at least part of the genetic basis for determining how the reproductive system shuts off in the fall and restarts in time for spring.

“This study offers some of the first insights into how changes in gene expression are associated with a seasonal clock,” said Brian Prendergast, co-author of the study and a post-doctoral fellow in psychology at Ohio State University.


The study was published online last month and will appear in the Dec. 10 issue of the Proceedings of the National Academy of Science.

The researchers found that the three genes – transthyretin, T4-binding globulin, and albumin – were turned on or off as part of an internal clock in hamsters. These genes help regulate levels of thyroid hormones in the hypothalamus, which is involved in controlling the hamsters’ reproductive cycle.

Hamster reproductive cycles are tied to day length and the amount of daylight they are exposed to during part of the year, Prendergast said. But there’s an interesting catch.

As daylight shortens in the late fall and early winter, the reproductive organs of the hamsters respond by shutting down. In the male hamsters used in this study, the testes regress as daylight shortens. However, the reproductive system begins to turn back on in mid-winter – long before daylight starts to lengthen. The reason why this has to happen is simple: it takes one to two months for the reproductive system to redevelop and if the hamsters had to wait for the lengthening days of spring to start the process of regrowth, it would be too late.

“The short days of winter triggers a timer that shuts off the reproductive cycle,” Prendergast said. “But the timer ends in mid-winter and tells the brain to stop responding to the short days. That’s when the reproductive cycle starts again.”

The researchers found part of the genetic basis for why the reproductive system is able to turn back on in the middle of winter.

In their experiments, the researchers had three groups of hamsters. One group was kept in long days – such as they would have during the summer when they are reproducing – for the whole 32-week experiment. Others were kept in short days during the whole experiment. The third group was kept in long days for 20 weeks, then moved to short days for the final 12 weeks.

The researchers were interested to see what was happening in a part of the brain – called the hypothalamus – that plays an important role in controlling reproduction in hamsters.

After the 32 weeks, the researchers sacrificed the hamsters to see which genes were active in the hypothalamus and which were not, and whether it differed depending on what season the hamsters were kept in.

The results showed that the three genes were being expressed – in other words, they were turned on – in the hamsters that were kept constantly in short days or in long days. These genes produce proteins that help the hypothalamus take in thyroid hormones involved in the regulation of reproduction. In other words, the animals in both long and short days had high levels of thyroid hormones in the brain and therefore were able to respond to changes in day length.

That’s because hamsters need these thyroid hormones both when they are breeding and when the reproduction system shuts down in the winter. Prendergast explained that a different process – separate from the thyroid hormones examined in this study – seemed to be involved in shutting the reproductive system down for the winter.

But the researchers found that the hamsters also need thyroid hormones in the hypothalamus to keep the reproductive system shut down during the winter. If the hypothalamus does not continue to get these hormones, the reproductive system beings to automatically re-grow. So when mid-winter comes the internal clock of the hamsters stops these thyroid hormones from entering the hypothalamus – resulting in the re-growth of the reproductive system in time for the spring breeding season.

The researchers found that the three genes they studied were not being expressed significantly (in other words, they were turned off) in the hamsters who had been housed in short days for 32 weeks – the equivalent of normal hamsters in mid- to late winter. This means the hypothalamus in the hamsters would not be taking in thyroid hormones and their reproductive systems would begin to turn back on.

“These hamsters had lost their ability to respond to the signals of short days. This means that levels of thyroid hormones will drop in the hypothalamus and initiate the recovery of the reproductive system in mid-winter,” he said.

Overall, the studies show how the genes transthyretin, T4-binding globulin, and albumin allow the brain to regulate the levels of thyroid hormones in the hypothalamus, Prendergast said. This in turn regulates how the hamsters’ reproductive systems respond to changing seasons throughout the year.

“The availability of thyroid hormones influences the seasonal timekeeping mechanism,” he said.

Prendergast conducted the study with Bedrich Mosinger, a researcher at Ohio State’s Neurobiotechnology Center; Pappachan Kollattukudy, director of the Neurobiotechnology Center and professor of biochemistry; and Randy Nelson, professor of psychology.


Contact: Contact: Brian Prendergast, (614) 538-9540;
Brianp@psy.ohio-state.edu

Randy Nelson, (614) 247-6408; Rnelson@osu.edu

Brian Prendergast | EurekAlert!
Further information:
http://www.osu.edu/researchnews/archive/geneseas.htm
http://www.acs.ohio-state.edu/units/research/
http://www.psy.ohio-state.edu/nelson/Brian.htm

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>